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Abstract

Large-scale networks such as the Internet has emerged as arguably the most complex distributed
communication network system. The mere size of such networks and all the various applications
that run on it brings a large variety of challenging problems. Similar problems lie in any network
- transportation, logistics, oil/gas pipeline etc where efficient paths are needed to route the flow
of demands. This dissertation studies the computation of efficient paths from the demand
sources to their respective destination(s).

We consider the buy-at-bulk network design problem in which we wish to compute efficient
paths for carrying demands from a set of source nodes to a set of destination nodes. In designing
networks, it is important to realize economies of scale. This is can be achieved by aggregating
the flow of demands. We want the routing to be oblivious: no matter how many source nodes
are there and no matter where they are in the network, the demands from the sources has
to be routed in a near-optimal fashion. Moreover, we want the aggregation function f to be
unknown, assuming that it is a concave function of the total flow on the edge. The total cost
of a solution is determined by the amount of demand routed through each edge. We address
questions such as how we can (obliviously) route flows and get competitive algorithms for this
problem. We study the approximability of the resulting buy-at-bulk network design problem.

Our aim is to find minimum-cost paths for all the demands to the sink(s) under two assump-
tions: (1) The demand set is unknown, that is, the number of source nodes that has demand
to send is unknown. (2) The aggregation cost function at intermediate edges is also unknown.
We consider different types of graphs (doubling-dimension, planar and minor-free) and pro-
vide approximate solutions for each of them. For the case of doubling graphs and minor-free
graphs, we construct a single spanning tree for the single-source buy-at-bulk network design
problem. For the case of planar graphs, we have built a set of paths with an asymptotically

tight competitive ratio.



Chapter 1

Introduction

1.1 Network Design

Network Design is an active research area in the intersection of Combinatorial Optimization
and Theoretical Computer Science that focuses on problems arising in the realm of modern

communication networks.

A typical instance of a network design problem has a directed or undirected graph G = (V| E)
that has non-negative edge costs c, for all e € E. The objective is to compute a minimum-cost
subgraph H of GG that satisfies a certain given criteria. For example, the objective would be
to find a set of minimum-cost paths to a single sink (this is a minimum-cost spanning tree
problem) or it could be about finding minimum-cost set of arcs in a directed graph such that
every vertex can reach every other vertex (this is the minimum-cost strongly connected subgraph
problem). There are a large number of practical applications for this abstract model of network
design. Optimal communication networks, publish /subscribe systems, VLSI chip design etc are

a few examples. More are given in section 1.5.

As mentioned by Anupam Gupta et al. | ], many practically relevant instances of net-
work design problems are NP-hard and thus are likely intractable. The research work presented
in this dissertation focuses on approximation algorithms as one possible way of circumventing
this impasse. Approximation algorithms have been used widely and for a long time. They
are known to be very efficient (i.e., they run in polynomial time) and provide solutions to in-
stances of many different optimization problems whose objective values are close to those of
their respective optimum solutions. More specifically, the problems discussed in this work are

minimization problems. In this context, we say that an algorithm is an a-approximation for a



given problem if the ratio of the cost of an approximate solution computed by the algorithm to

that of an optimum solution is at most « over all instances.

A typical client-server model has many clients and multiple servers where a subset of the
client set wishes to route a certain amount of data to a subset of the servers at any given
time. The set of clients and the servers are assumed to be geographically far apart. To enable
communication among them, there needs to be a network of cables deployed. Moreover, the
deployment of network cables has to be of minimum cost that also minimizes the communication
cost among the various network components. This is what we roughly call as a typical network
design problem. The same problem can be easily applied to many similar practical scenarios

such as oil/gas pipelines and the Internet.

There has been a lot of research on approximation algorithms in the last 30 years, particu-
larly in the area of network design algorithms. During this period, many different approaches

have been explored and exploited to design algorithms and for their analysis.

The minimum spanning tree problem has been studied for at least a century, and it is clearly
one of the most prominent network design problems. This earliest known algorithm for this
problem was developed by Boruvka | |, and since then, a number of techniques have been

developed and used to design increasingly sophisticated algorithms.

1.1.1 Steiner Tree Problems

As mentioned by Stefan VoBin [Vo6], one of the oldest mathematical problems related to network
design may be formulated as follows: Given three points A,B and C' in the plane, find a point

P such that the sum of its distances to the three given points is minimal.

Connecting a given set of points at minimum cost may be rated as one of the most important
problems in telecommunications network design. For that matter, it can be regarded as one of

the core problems in networks of any kind - transportation/logistics, power circuitry in VLSI



chips etc. There are number of variations to this problem and most of them have immediate
practical applications. One of them may be formulated in metric spaces as well as in graphs:
Given a weighted graph, the Steiner tree problem in graphs requires to determine a minimum
cost subgraph spanning a set of specified vertices. This subgraph could use vertices other than
the specified vertices for interconnection. This problem is viewed as combinatorial optimization

problem in telecommunications.

This problem, though it sounds simple, is at the core of many network design problems.
Many researchers and mathematicians have contributed to solving this problem including Fer-

mat (in 1640) and Steiner (1835). There are several variants of the Steiner tree problem:

e The Euclidean Steiner problem (metric space version)
e The rectilinear Steiner problem

e The Steiner problem in graphs

1.2 Oblivious Buy-at-Bulk Network Design

The “Buy-at-Bulk” network design considers the economies of scale into account. As observed
by Chekuri et al. in | |, in a telecommunication network, bandwidth on a link can be
purchased in some discrete units u; < ug < --- < u; with costs ¢; < ¢y < --- < ¢; respectively.
The economies of scale exhibits the property where the cost per bandwidth decreases as the
number of units purchased increases: c¢i/u; > co/us > ...c;/u;. This property is the reason

why network capacity is bought /sold in “wholesale”, or why vendors provide “volume discount”.

There are different variants of buy-at-bulk network design problems that arise in practice.
One of them is “single-sink buy-at-bulk” network design (SSBB). This SSBB problem has a
single “destination” node where all the demands from other nodes has to be routed to. The

generalized form of the buy-at-bulk problem is where there are multiple demands from sources



to destinations, and it is commonly referred as Multi-Sink Buy-at-Bulk (MSBB). Typically, the
demand flows are in discrete units and are unsplittable (indivisible), i.e., the flow follows a
single path from the demand node to its destination. These problems are often called “discrete

cost network optimization” in operations research.

As mentioned by Goel and Estrin | ], if information flows from z different sources over
a link, then, the cost of total information that is transmitted over that link is proportional
to f(x), where f : Z* — R*. The function f is called a canonical fusion function if it is
concave, non-decreasing, f(0) = 0 and has the subadditive property f(z1+z2) < f(x1)+ f(x2),
Vaq, 9, (1 + x2) € ZT. Generally, SSBB and MSBB problems use the subadditive property to
ensure that the ‘size’ of the aggregated data is smaller than the sum of the sizes of individual
data. In the case of SSBB, if the set of demand nodes is known in advance and f is constant,

then, this is a well-known Steiner tree problem.

We study the oblivious buy-at-bulk network design problem (SSBB and MSBB) with the
following constraints: an unknown set of demands and an unknown concave fusion cost function
f. In other words, we describe a novel approach for developing an oblivious spanning tree (or set
of paths) in the sense that it is independent of the number and location of demand sources and
cost function at the edges. An abstraction of this problem can be found in many applications,
one of which is data fusion in wireless sensor networks where data from sensors is aggregated
over time in multiple sinks. Other application include Transportation & Logistics (railroad,
water, oil, gas pipeline construction) etc. Many of these problems are formulated as networks

on a plane that can be mapped to planar graphs.

1.2.1 General Problem Statement

In the following paragraphs, a general problem statement is given. More specific problem

statements for appropriate graph types and scenarios are provided in subsequent chapters.



Assume that we are given a weighted graph G = (V, E, w), with edge weights w : £ — Ry,
with a sink s € V. We denote w, to be the weight of edge e. Let A = {vy,vq,...,04}, ACV
be the set of demand nodes. Let each node v; € A have a non-negative unit demand. In the
SSBB case, a demand from v; induces a unit of flow to sink s and this flow is unsplittable. For
the MSBB case, each unit demand d; = (s;, t;) induces an unsplittable unit of flow from source
node s; € V to destination node t; € V. Let A = {dy,ds, ...,d,} be a set of demands that are

routed through paths in G. It is possible that some paths may overlap.

The demands from various demand nodes have to be sent to their respective destination
node(s) possibly routed through multiple edges in the graph G. This flow of demands forms
a set of paths P(A) = {p(v1),p(v2),...,p(vq)}, where p(v;) is the path from v; € A to s. The
output for a given graph G, sink s and a set of demand nodes A is a set of paths P from the
nodes in A to their destination(s). We seek to find such a set of paths with minimal cost with

respect to a cost function described below.

There is an arbitrary concave fusion-cost function f at every edge where demand aggregates.
This f is the same for all the edges in G. Let p(v) be the path taken by a flow from v to its
destination s in G. Let p.(A) : {p(v) : e € p(v) ANv € A} denote the set of paths originating
from nodes in A that use an edge e € E. Then, we define the cost of an edge e to be

Ce(A) = f(|pe(A)]) - we. The total cost of the set of paths is defined to be C(A) =", C(A).

For a given set A of demand nodes in G, the corresponding set of paths P(A) would incur a
total cost denoted by C'(A). For this set A, there is an optimal set of paths P*(A) with respect
to the total cost denoted by C*(A). The competitive ratio for the cost of these two sets of

c(A)
(

paths is given by Ay

The oblivious case arises when we do not know the set of demand nodes, the positions of
those nodes and the fusion-cost function in advance. So, given a graph G = (V, E) with sink

s € V, an oblivious algorithm, A, must compute a set of paths P(V') which induces P(A) for



any set A C V. The competitive ratio of this oblivious algorithm is given by:

C.R.(Awm) = Prar CCE(AA))'

We aim to find an oblivious algorithm that minimizes the above competitive ratio.

1.3 Definitions

We provide several common definitions here that will be used in later chapters. Some termi-
nologies used later in the each of the chapters would be specific to that chapter and defined in

appropriate sections in that chapter.

Consider a weighted graph G = (V, E,w), where w : E — Z*. Let s € V be the sink node.
For any two nodes u,v € V let dist(u,v) denote the distance between u,v (measured as the
total weight of the shortest path that connects u and v). Given a subset V' C V| we denote
dist(u, V') the smallest distance between u and any node in V'. Let D denote the diameter
of G, that is, D = max, ey dist(u, v). For any path p denote its length (number of edges) as
p| or len(p). For any path p in G let the length be len(p) = > . w., that is, the sum of the

weights of the edges in p.

Given a graph G = (V| E), the r-neighborhood of any vertex u € V denoted N(u,r), is
defined as the set of nodes whose distance is at most r from u; namely, N (u, ) = {v | dist(u,v) <
r}. The r-neighborhood of a set of vertices V' € V' denoted by N(V',r), is defined as the set
of nodes whose distance is at most r from any node in v’. We adapt the definition of doubling-

dimension graph from Nieberg and Gupta et al. | , ].

For any two nodes u,v € V, their distance dist(u,v) is the length of the shortest path
that connects the two nodes in G. The diameter D is the length of the longest shortest path

in G. The radius of a node v is rad(v) = max,cy (dist(v,u)). The radius of G is defined as



rad(G) = min,(rad(v)). We denote by Ni(v) the k-neighborhood of v which is the set of nodes
distance at most k from v. For any set of nodes S C V', we denote by N (.S) the k-neighborhood

of S which contains all nodes which are within distance k£ from any node in S.

A set of nodes X C V is called a cluster if the induced subgraph G(X) is connected. Let
Z ={X1,Xa,..., Xk} be aset of clusters in G. For every node v € G, let Z(v) C Z denote the
set of clusters that contain v. The degree of v in Z is defined as (,(Z) = |Z(v)|, which is the
number of clusters that contain v. The degree of Z is defined as 5(Z) = max,ey 5,(Z), which

is largest degree of any of its nodes. The radius of Z is defined as rad(Z) = mazxecz(rad(X)).

1.4 Related Work

1.4.1 Oblivious Network Design

Below, we present the related work on oblivious network design and Table 3.1 summarizes some
results and compares our work with their’'s. What distinguishes our work with the others’ is
the fact that we provide a set of paths for the MSBB problem while others provide an overlay

tree for the SSBB version.

Goel et al. | | build an overlay tree on a graph that satisfies triangle-inequality. Their
technique is based on maximum matching algorithm that guarantees (14 log k)-approximation,
where k is the number of sources. Their solution is oblivious with respect to the fusion cost
function f. In a related paper | |, Goel et al. construct (in polynomial time) a set of
overlay trees from a given general graph such that the expected cost of a tree for any f is
within an O(1)-factor of the optimum cost for that f. A recent improvement by Goel | ]

provides the first constant guarantee on the simultaneous ratio of O(1).

Jia et al. | | build a Group Independent Spanning Tree Algorithm (GIST) that
constructs an overlay tree for randomly deployed nodes in an Euclidean 2 dimensional plane.

The tree (that is oblivious to the number of data sources) simultaneously achieves O(logn)-

7



approximate fusion cost and O(1)-approximate delay. However, their solution assumes a con-

stant fusion cost function. We summarize and compare the related work in Table 3.1.

Lujun Jia et al. | | provide approximation algorithms for TSP, Steiner Tree and set
cover problems. They present a polynomial-time (O(log(n)), O(log(n)))-partition scheme for
general metric spaces. An improved partition scheme for doubling metric spaces is also presented
that incorporates constant dimensional Euclidean spaces and growth-restricted metric spaces.
The authors present a polynomial-time algorithm for Universal Steiner Tree (UST) that achieves
polylogarithmic stretch with an approximation guarantee of O(log®n/loglog(n)) for arbitrary
metrics and derive a logarithmic stretch, O(log(n)) for any doubling, Euclidean, or growth-
restricted metric space over n vertices. They provide a lower bound of (logn/loglogn) for

UST that holds even when all the vertices are on a plane.

Gupta et al. | | develop a framework to model oblivious network design problems
(MSBB) and give algorithms with poly-logarithmic approximation ratio. They develop obliv-
ious algorithms that approximately minimize the total cost of routing with the knowledge of
aggregation function, the class of load on each edge and nothing else about the state of the
network. Their results show that if the aggregation function is summation, their algorithm
provides a O(log®n) approximation ratio and when the aggregation function is max, the ap-
proximation ratio is O(log® nloglogn). The authors claim to provide a deterministic solution

by derandomizing their approach. But, the complexity of this derandomizing process is unclear.

1.4.2 Non-Oblivious Network Design

There has been a lot of research work in the area of approximation algorithms for network
design. Since network design problems have several variants with several constraints, only a
partial list has been mentioned here. The “single-sink buy-at-bulk” network design (SSBB)
problem has a single “destination” node where all the demands from other nodes have to

be routed to. Network design problems have been primarily considered in both Operations



Research and Computer Science literatures in the context of flows with concave costs. The
single-sink variant of the problem was first introduced by Salman et al. | . They
presented an O(logn)-approximation for SSBB in Euclidean graphs by applying the method
of Mansour and Peleg | |. Bartal’s tree embeddings | | can be used to improve their

ratio to O(lognloglogn). A O(log? n)-approximation was given by Awerbuch et al. | ]

for graphs with general metric spaces. Bartal et al. | | further improved this result to
O(logn). Guha | | provided the first constant-factor approximation to the problem,
whose ratio was estimated to be around 9000 by Talwar | |. The constant has been further

improved by Grandoni and Rothvoss | ]

1.5 Significance of the Research

Connectivity and facilities location are two important topics in network design with applications
in data communication, transportation, product planning, and VLSI designs. There are two
issues concerning these two topics: design and optimization. They involve combinatorial de-
sign and combinatorial optimization. No polynomial time algorithms are known for the design
and optimization for problems such as Steiner tree problems, topology network design, nonlin-
ear assignment problems, problems in facilities location and allocation and network problems

appearing in VLSI design.

Buy-at-Bulk Network Design Problem has numerous practical applications. A brief list of

applications is provided below.

VLSI Power Circuitry: The exponential scaling of feature sizes in semiconductor tech-
nologies has side-effects on layout optimization, related to effects such as interconnect delay,
noise and crosstalk, signal integrity, parasitics effects, and power dissipation, that invalidate

the assumptions that form the basis of previous design methodologies and tools.



In a microprocessor, there are several components that need power. To minimize power
usage and heat generation, microprocessors work by activating only those components that
need to work while others are inactive. So, at any instant of time, only a subset of components
must be powered by a single power circuitry. Also, this single circuit that connects all the
components must be of near-optimal length for all demand scenarios. The smaller the length

of the wires, the lower the IR-Drop (power dissipation).

Wireless Sensor Networks: Distributed Wireless Sensor Networks collect and send infor-
mation to a sink via multiple hops in the network. During this multihop relay of information, it
gets aggregated with other information at the fusion points (nodes). Typically, sensor networks
applications may care only about aggregate information (eg., average temperature, humidity
etc). An important aspect in such networks is the dynamism in the set of sources that needs
to send data. At various instances of time, different set of sources might have data to send to
the sink. Since wireless sensor nodes are energy constrained, they are incapable of computing
an optimal tree for every instance. In such cases, one needs to build a single tree to route data

to the sink.

Publish-Subscribe Systems: In the publish/subscribe (pub/sub) communication paradigm,
publishers and subscribers interact in a decoupled fashion. Publishers publish their messages
through logical channels and subscribers receive the messages they are interested in by subscrib-
ing to the appropriate services, which deliver messages through these channels. Designing an
overlay network for publish/subscribe communication in a system where nodes may subscribe
to many different topics of interest is of fundamental importance. For scalability and efficiency,

it is important to keep the degree of the nodes in the publish/subscribe system low.

In such systems, users publish or subscribe to information and such information flowing
through network can be aggregated. If a publisher produces web pages, the content distribu-

tion network replicates web pages to many locations so consumers can access at higher speed.

10



Another instance is the typical web-proxy installation problem where an ISP needs to deter-
mine how many web-proxies need to be installed at what places to properly serve its customers.
Furthermore, it has to determine what contents are needed to be pushed into those proxies and

at what rate they must be refreshed (if needed).

Oil/Gas Pipelines: There is a cost in laying oil/gas pipes to connect various stations/cities.
Naturally, the larger the capacity of a pipe and the greater the number of consumers using the
pipe, the cheaper would be price to pay for using the pipe (by the consumers). Hence, to build

an optimal pipeline, buy-at-bulk network design principles comes into play.

Data-Center Networks: Cloud Computing is quickly being adopted by various industries
and customers alike despite apparent issues in security and maintenance. A key factor in the
performance of cloud-computing is the network efficiency of the associated data-centers (DC).
Data centers are located geographically apart to serve customers in all regions. The inter-DC
network bandwidth poses a high-risk in performance (goodput) if the network is not properly
designed. This problem boils down to properly decomposing the network graph such that

customers at geographically well-separated regions are well-served.

11



Chapter 2

Doubling-Dimension Graphs

2.1 Overview

We consider the problem of constructing a single spanning tree for the single-sink buy-at-bulk
network design problem for doubling-dimension graphs. We compute a spanning tree to route
a set of demands along a graph G to or from a designated sink node. The demands could
be aggregated at (or symmetrically distributed to) intermediate edges where the fusion-cost is
specified by a non-negative concave function f. We describe a novel approach for developing
an oblivious spanning tree in the sense that it is independent of the number and location of
demand sources and cost function at the edges. We present a deterministic, polynomial-time
algorithm for constructing a spanning tree in low doubling-dimension graphs that guarantees
a log® D-approximation over the optimal cost, where D is the diameter of the graph G. With
a constant fusion-cost function, our spanning tree gives a O(log® D)-approximation for every
Steiner tree that includes the sink. We also provide a Q(logn) lower-bound for any oblivious

tree in low doubling-dimension graphs.

2.1.1 Problem Statement

Assume that we are given a weighted graph G = (V, E, w), with edge weights w : E — Rsy,
with a sink s € V. We denote w, to be the weight of edge e. Let A = {vy,vq,...,04}, A CV be
the set of demand nodes. Let each node v; € A have a non-negative unit demand. A demand
from v; induces a unit of flow to sink s and this flow is unsplittable. The demands from various
demand nodes have to be sent to the destination node s possibly routed through multiple edges
in the graph G. This forms a set of paths P(A) = {p(v1),p(va),...,p(va)}, where p(v;) is the

path from v; € A to s. The output for a given graph G, sink s and a set of demand nodes A is
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a set of paths P from the nodes in A to s. We seek to find such a set of paths with minimal

cost with respect to a cost function described below.

There is an arbitrary concave fusion-cost function f at every edge where demand aggregates.
This f is the same for all the edges in G. Let p(v) be the path taken by a flow from v to s in
G. Let p.(A) : {p(v) : e € p(v) ANv € A} denote the set of paths originating from nodes in A
that use an edge e € E. Then, we define the cost of an edge e to be C.(A) = f(|pe(A4)]) - we.
The total cost of the set of paths is defined to be C'(A) = > Cc.(A).

For a given set A of demand nodes in GG, the corresponding set of paths P(A) would incur a
total cost denoted by C'(A). For this set A, there is an optimal set of paths P*(A) with respect
to the total cost denoted by C*(A). The competitive ratio for the cost of these two sets of

paths is given by %.

The oblivious case arises when we do not know the set of demand nodes in advance. So,
given a graph G = (V, E) with sink s € V, an oblivious algorithm, A, must compute a set
of paths P(V') which induces P(A) for any set A C V. The competitive ratio of this oblivious

algorithm is given by:

C(A)
C.R.(Aobl) = I}llga‘)/( C*(A)
We aim to find an oblivious algorithm that minimizes the above competitive ratio. We note

that SSBB is NP-Hard as the Steiner tree problem is a special of case of SSBB (when f(z) = 1)

[ J

Definition 2.1.1 (doubling-dimension of a Graph). The doubling-dimension of a graph G
1s the smallest p such that every r-neighborhood is a subset of the union of at most 2° sets of

r/2-neighborhoods. If p is constant, then we say that G is of low doubling-dimension.

Observation 2.1.2. For a graph with doubling-dimension p, any 1-neighborhood contains
at most 2° nodes. Any 2F-neighborhood, can be covered by at most 207 number of 2!-

neighborhoods, where k > 1 > 0.
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Lemma 2.1.3. In any 2F-neighborhood, the size of any 2'-independent set of nodes does not

exceed 213 where k> 1 > 0.

Proof. Let U be 2*-neighborhood of a node v. Let I be a 2'-independent set of nodes in the 2*-
neighborhood of a node v. If 0 <1 < 2, then |I| < |U| < 2(k+1e < 2(k=143)0 (from Observation
2.1.2). If, I > 3, from Observation 2.1.2, U can be covered by at most 2 =3 number of

2/=3_neighborhoods. Therefore, have that || < 2(=1+3)e, O

We consider building an oblivious spanning tree for doubling dimension graphs. Dou-
bling dimension graphs has been used in many different contexts including compact routing
in wired networks [ , |, traveling salesman, navigability and problems related
to modeling the structural properties of the Internet distance matrix for distance estimation
[ , |. As noted by Fraigniaud | ], it has become a key concept to measure
the ability of network to support efficient algorithms or to realize specific tasks efficiently. For
wireless networks, this concept has found many uses in solving many distributed communica-
tion problems | ], distributed resource-management | ], information exchange
among producers and consumers | ], and for determining other performance qualities

such as energy-conservation in wireless sensor networks | ]-

2.1.2 Contribution

We seek to find a spanning tree T" rooted at sink s for any doubling-dimension graph G. The
spanning tree 7" we build produces a set of unique paths P(V') from Vv € V to the sink s. This
T is oblivious since it is independent of the demand sources, and can accommodate any canon-
ical fusion-cost function. Our approach gives a deterministic, polynomial-time algorithm that
guarantees O(2'77log® D) competitive ratio for graphs with doubling-dimension p. Therefore,
for low doubling-dimension graphs, we obtain a O(log® D) competitive ratio. When f(-) = c,

a constant, our spanning tree solution provides a O(log® D)-approximation to any Steiner tree
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that contains the sink s. To our knowledge, these are the first spanning tree solutions to the
oblivious SSBB problem and also for the oblivious Steiner tree problem. We also give a lower
bound in n x n grids for the competitive ratio for any oblivious SSBB spanning tree T to be of

Qlogn).

It is well-known in the research community that tree structures provide a very efficient
solution for managing data dissemination and aggregation in large-scale distributed systems.
Prominent architectures like the content-based publish-subscribe, peer-to-peer communication,
muticasting etc take advantage of efficient routing in trees and distributed maintenance of the

tables in each node of the network.

The motivation for us to build a spanning tree not only comes from the above mentioned
advantages and current use, but also because of the fact that it has the most compact form of
data structure in the sense that they have the minimum number of edges connecting all the
nodes (n — 1). Furthermore, their inherent acyclic property conveniently avoids inefficient use
of the network due to unnecessary cyclic demand traversal and hence avoids increased costs.
Since there are no routing loops formed during the tree construction, any design of routing

algorithms on trees is greatly simplified.

We build a spanning tree based on the following technique. We partition the nodes in a
hierarchical fashion. The selection of nodes for a given ‘level’” of hierarchy is based on finding
d-independent nodes, where d is proportional to that level. Nodes of successive levels are
connected by bounded length paths. The intersecting paths that may potentially form cycles
are appropriately modified to result in a spanning tree. A modified spanning tree is built from
the spanning tree to ensure that all paths have appropriate end-nodes. Analysis is done on this

modified tree.

To demonstrate the basic techniques and concepts, we initially build an overlay tree and
produce a log D competitive ratio. An overlay tree is a tree where each edge in the tree could

be a path in the underlying physical infrastructure. Shortest paths in an overlay tree, when
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projected to its underlying network, could have several intersections leading to cycles. Our
initial overlay tree construction and analysis gives an insight for the analysis of the spanning
tree that we build subsequently. Since the overlay tree may result in having cycles, our main
algorithm for constructing a spanning tree extends the overlay tree algorithm to obtain a

competitive ratio of O(log® D).

We perform simulation to compare the cost of the spanning tree with trees from several
prior related work and a few well known trees (Minimum Spanning Tree and Shortest-Paths
Tree). For comparison, we generate the trees and costs by simulation using NetworkX | ].
The simulations corroborate the analytical results and show that the oblivious spanning tree

provides very competitive costs and in fact provides better costs than the well known trees.

2.2 Definitions

A set of nodes [ is said to be a d-independent set if for each pair u,v € I, u # v, dist(u,v) > d.
Given a set of nodes H C V and parameter d, we define Mazximal Independent Set of G for
distance d as I = MIS(G,H,d) to be an arbitrary maximal d-independent set of nodes in
G such that H C I. Note that, to begin with, the nodes in the given set H must also be
d-independent. MIS(G, H,d) can be constructed in polynomial time with a simple greedy

algorithm.

2.3 Technique Used

Our spanning tree construction is based on the following techniques. We partition the nodes
in a hierarchical fashion. The selection of nodes for a given ‘level’ of hierarchy is based on
their mutual distances proportional to the level. Nodes of successive levels are connected by
shortest paths. The intersecting paths are appropriately modified to result in a spanning tree.

A modified tree is built from the spanning tree to ensure that all paths have appropriate end-
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nodes. Analysis is done on this modified tree.

2.4 Overlay Tree

We describe how to construct an overlay tree from a connected graph G = (V, E). This will be

useful for the design and analysis of the spanning tree algorithm.

The overlay tree T'= (Vr, E7) is built as follows. Let x = [log D], where D is the diameter
of graph G. The overlay tree T consists of x + 1 levels of node sets, Vi = Iy U --- U I, which
are selected in a top down manner. The root of T is s and I, = {s}. Given I;;;, we define
I; = MIS(G, I;11,2"). The leaves of T are all the nodes in G, namely, Iy = V. Members of I
are also called leaders at level i. Note that some leaders could belong to multiple levels (eg.,
the sink s is a member of all levels). For any node u € I;, i < k, its parent in T is chosen to
be a leader in I;; 1 N N(u, 2772 — 2) which is closest to s (a parent is guaranteed to exist due to

the maximal independent set property of I;11).

For every edge (u,v) € Ep, where u € I; and v € I;;1, we select one of the shortest paths
from u to v to be the designated path from u to v to represent edge (u,v). In case u = v, the
designated shortest path has length zero. For any node v the tree T' defines a unique path
q(v) = (eg,€1,-..,6x_1) € T from the leaf v to the root s. The path ¢(v) is translated to a
unique path p(v) = (po(v), p1(v), ..., px—1(v)) from v to s in G by replacing each edge e; € q(v)
with the respective designated shortest path p;(v). We will refer to p;(v) as the layer-i subpath

of p(v).
2.4.1 Basic Properties of Overlay Tree

For each node u € I;, let Z denote all the leaves in 7" which appear in the subtree of 7" rooted
at u at level 2. The overlay tree 7' naturally defines a hierarchical partition of G because for

any v # u, Z' # Z? and for all y € G, y € Z¥ for any =.
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We will use the following parameters for the analysis of overlay trees. Please note that the
same set of parameters with appropria