
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2011

Oblivious buy-at-bulk network design algorithms
Srivathsan Srinivasagopalan
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Srinivasagopalan, Srivathsan, "Oblivious buy-at-bulk network design algorithms" (2011). LSU Doctoral Dissertations. 3439.
https://digitalcommons.lsu.edu/gradschool_dissertations/3439

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/3439?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3439&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

OBLIVIOUS BUY-AT-BULK NETWORK DESIGN ALGORITHMS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Computer Science

by
Srivathsan Srinivasagopalan

M.S., University of Texas, Dallas, 1999
B.S., Madras University, 1997

May, 2011

Acknowledgments

In many ways, the best part of my years at LSU has been the amazing people that I have had

the opportunity to meet, to collaborate with, and to get to know personally. Without their

ideas, their enthusiasm, and their support, this thesis would never have happened.

Working towards a Ph.D. is a long meandering road where one has to have several people’s

help and advice. First and foremost, I would like to thank Prof. Costas Busch and Prof.

S.S. Iyengar. Even more than their indispensable advice and technical skill, it has been their

enthusiasm and positive attitude that has made this thesis possible. From Dr. Busch, I learn

the art and philosophy of why rigorous proofs are important and how to go about proving things

with all the gory details. I will especially treasure the many hours spent with him in arguments

over very abstract problems and in searching for that one elusive counter-example that would

destroy our algorithm. Dr. Iyengar’s infectious enthusiasm for research and his irrational belief

in my abilities has often made his office my first recourse when in doubt. I would also like to

thank the other members of my thesis committee, Prof. Seung-Jong Park, and Prof. Supratik

Mukhopdhyay. They have provided valuable feedback and interesting perspectives on the ideas

contained in this thesis.

Finally, let me conclude by thanking my parents Rajam Srinivasagopalan and Nalini Srini-

vasagopalan, and my brothers Venkat Sreenivas and Pat Srinivas for their help, encouragement

and support. I would like to thank my wife Harini for everything; without her, none of this

would have been possible. For the past 4 years, she has made my academic life a lot more easier

with her unconditional support.

ii

Table of Contents

Acknowledgments . ii

Abstract . v

Chapter
1 Introduction . 1

1.1 Network Design . 1
1.1.1 Steiner Tree Problems . 2

1.2 Oblivious Buy-at-Bulk Network Design . 3
1.2.1 General Problem Statement . 4

1.3 Definitions . 6
1.4 Related Work . 7

1.4.1 Oblivious Network Design . 7
1.4.2 Non-Oblivious Network Design . 8

1.5 Significance of the Research . 9

2 Doubling-Dimension Graphs . 12
2.1 Overview . 12

2.1.1 Problem Statement . 12
2.1.2 Contribution . 14

2.2 Definitions . 16
2.3 Technique Used . 16
2.4 Overlay Tree . 17

2.4.1 Basic Properties of Overlay Tree . 17
2.4.2 Competitive Analysis of Overlay Tree . 19

2.5 Spanning Tree Construction . 21
2.6 Modified Tree Construction . 25
2.7 Analysis of Modified Tree . 28
2.8 Lower Bound . 32
2.9 Simulation Results . 37
2.10 Conclusions . 39

3 Planar Graphs . 40
3.1 Overview . 40

3.1.1 Problem Statement . 40
3.1.2 Contribution . 41

3.2 Definitions . 42
3.3 Technique Used . 42
3.4 Sparse Cover . 44
3.5 Algorithm . 47
3.6 Analysis for O(logD)-approximation . 49
3.7 Analysis for O(log n)-approximation . 52

iii

3.8 Conclusions . 57

4 Minor-Free Graphs . 59
4.1 Overview . 59

4.1.1 Problem Statement . 59
4.1.2 Contribution . 60

4.2 Definitions . 61
4.2.1 H-Minor Free Graphs . 61
4.2.2 Partition . 61
4.2.3 Coloring . 62
4.2.4 Laminar Family . 62
4.2.5 Hierarchical Partitioning . 63

4.3 Technique Used . 64
4.4 Strong Partitioning in Minor-Free Graphs . 65
4.5 Construction of Laminar Clusters . 74
4.6 Spanning Tree Construction . 77

4.6.1 Computation of Paths . 80
4.6.2 Competitive Ratio . 80

4.7 Conclusions . 83

5 Conclusions and Outlook . 85
5.1 Outlook . 86

Bibliography . 89

Vita . 92

iv

Abstract

Large-scale networks such as the Internet has emerged as arguably the most complex distributed

communication network system. The mere size of such networks and all the various applications

that run on it brings a large variety of challenging problems. Similar problems lie in any network

- transportation, logistics, oil/gas pipeline etc where efficient paths are needed to route the flow

of demands. This dissertation studies the computation of efficient paths from the demand

sources to their respective destination(s).

We consider the buy-at-bulk network design problem in which we wish to compute efficient

paths for carrying demands from a set of source nodes to a set of destination nodes. In designing

networks, it is important to realize economies of scale. This is can be achieved by aggregating

the flow of demands. We want the routing to be oblivious : no matter how many source nodes

are there and no matter where they are in the network, the demands from the sources has

to be routed in a near-optimal fashion. Moreover, we want the aggregation function f to be

unknown, assuming that it is a concave function of the total flow on the edge. The total cost

of a solution is determined by the amount of demand routed through each edge. We address

questions such as how we can (obliviously) route flows and get competitive algorithms for this

problem. We study the approximability of the resulting buy-at-bulk network design problem.

Our aim is to find minimum-cost paths for all the demands to the sink(s) under two assump-

tions: (1) The demand set is unknown, that is, the number of source nodes that has demand

to send is unknown. (2) The aggregation cost function at intermediate edges is also unknown.

We consider different types of graphs (doubling-dimension, planar and minor-free) and pro-

vide approximate solutions for each of them. For the case of doubling graphs and minor-free

graphs, we construct a single spanning tree for the single-source buy-at-bulk network design

problem. For the case of planar graphs, we have built a set of paths with an asymptotically

tight competitive ratio.

v

Chapter 1

Introduction

1.1 Network Design

Network Design is an active research area in the intersection of Combinatorial Optimization

and Theoretical Computer Science that focuses on problems arising in the realm of modern

communication networks.

A typical instance of a network design problem has a directed or undirected graphG = (V,E)

that has non-negative edge costs ce for all e ∈ E. The objective is to compute a minimum-cost

subgraph H of G that satisfies a certain given criteria. For example, the objective would be

to find a set of minimum-cost paths to a single sink (this is a minimum-cost spanning tree

problem) or it could be about finding minimum-cost set of arcs in a directed graph such that

every vertex can reach every other vertex (this is the minimum-cost strongly connected subgraph

problem). There are a large number of practical applications for this abstract model of network

design. Optimal communication networks, publish/subscribe systems, VLSI chip design etc are

a few examples. More are given in section 1.5.

As mentioned by Anupam Gupta et al. [GK10], many practically relevant instances of net-

work design problems are NP-hard and thus are likely intractable. The research work presented

in this dissertation focuses on approximation algorithms as one possible way of circumventing

this impasse. Approximation algorithms have been used widely and for a long time. They

are known to be very efficient (i.e., they run in polynomial time) and provide solutions to in-

stances of many different optimization problems whose objective values are close to those of

their respective optimum solutions. More specifically, the problems discussed in this work are

minimization problems. In this context, we say that an algorithm is an α-approximation for a

1

given problem if the ratio of the cost of an approximate solution computed by the algorithm to

that of an optimum solution is at most α over all instances.

A typical client-server model has many clients and multiple servers where a subset of the

client set wishes to route a certain amount of data to a subset of the servers at any given

time. The set of clients and the servers are assumed to be geographically far apart. To enable

communication among them, there needs to be a network of cables deployed. Moreover, the

deployment of network cables has to be of minimum cost that also minimizes the communication

cost among the various network components. This is what we roughly call as a typical network

design problem. The same problem can be easily applied to many similar practical scenarios

such as oil/gas pipelines and the Internet.

There has been a lot of research on approximation algorithms in the last 30 years, particu-

larly in the area of network design algorithms. During this period, many different approaches

have been explored and exploited to design algorithms and for their analysis.

The minimum spanning tree problem has been studied for at least a century, and it is clearly

one of the most prominent network design problems. This earliest known algorithm for this

problem was developed by Boruvka [Bor26], and since then, a number of techniques have been

developed and used to design increasingly sophisticated algorithms.

1.1.1 Steiner Tree Problems

As mentioned by Stefan Voßin [Vo6], one of the oldest mathematical problems related to network

design may be formulated as follows: Given three points A,B and C in the plane, find a point

P such that the sum of its distances to the three given points is minimal.

Connecting a given set of points at minimum cost may be rated as one of the most important

problems in telecommunications network design. For that matter, it can be regarded as one of

the core problems in networks of any kind - transportation/logistics, power circuitry in VLSI

2

chips etc. There are number of variations to this problem and most of them have immediate

practical applications. One of them may be formulated in metric spaces as well as in graphs:

Given a weighted graph, the Steiner tree problem in graphs requires to determine a minimum

cost subgraph spanning a set of specified vertices. This subgraph could use vertices other than

the specified vertices for interconnection. This problem is viewed as combinatorial optimization

problem in telecommunications.

This problem, though it sounds simple, is at the core of many network design problems.

Many researchers and mathematicians have contributed to solving this problem including Fer-

mat (in 1640) and Steiner (1835). There are several variants of the Steiner tree problem:

• The Euclidean Steiner problem (metric space version)

• The rectilinear Steiner problem

• The Steiner problem in graphs

1.2 Oblivious Buy-at-Bulk Network Design

The “Buy-at-Bulk” network design considers the economies of scale into account. As observed

by Chekuri et al. in [CHKS06], in a telecommunication network, bandwidth on a link can be

purchased in some discrete units u1 < u2 < · · · < uj with costs c1 < c2 < · · · < cj respectively.

The economies of scale exhibits the property where the cost per bandwidth decreases as the

number of units purchased increases: c1/u1 > c2/u2 > . . . cj/uj. This property is the reason

why network capacity is bought/sold in “wholesale”, or why vendors provide “volume discount”.

There are different variants of buy-at-bulk network design problems that arise in practice.

One of them is “single-sink buy-at-bulk” network design (SSBB). This SSBB problem has a

single “destination” node where all the demands from other nodes has to be routed to. The

generalized form of the buy-at-bulk problem is where there are multiple demands from sources

3

to destinations, and it is commonly referred as Multi-Sink Buy-at-Bulk (MSBB). Typically, the

demand flows are in discrete units and are unsplittable (indivisible), i.e., the flow follows a

single path from the demand node to its destination. These problems are often called “discrete

cost network optimization” in operations research.

As mentioned by Goel and Estrin [GE03], if information flows from x different sources over

a link, then, the cost of total information that is transmitted over that link is proportional

to f(x), where f : Z+ → R+. The function f is called a canonical fusion function if it is

concave, non-decreasing, f(0) = 0 and has the subadditive property f(x1 +x2) ≤ f(x1)+f(x2),

∀x1, x2, (x1 + x2) ∈ Z+. Generally, SSBB and MSBB problems use the subadditive property to

ensure that the ‘size’ of the aggregated data is smaller than the sum of the sizes of individual

data. In the case of SSBB, if the set of demand nodes is known in advance and f is constant,

then, this is a well-known Steiner tree problem.

We study the oblivious buy-at-bulk network design problem (SSBB and MSBB) with the

following constraints: an unknown set of demands and an unknown concave fusion cost function

f . In other words, we describe a novel approach for developing an oblivious spanning tree (or set

of paths) in the sense that it is independent of the number and location of demand sources and

cost function at the edges. An abstraction of this problem can be found in many applications,

one of which is data fusion in wireless sensor networks where data from sensors is aggregated

over time in multiple sinks. Other application include Transportation & Logistics (railroad,

water, oil, gas pipeline construction) etc. Many of these problems are formulated as networks

on a plane that can be mapped to planar graphs.

1.2.1 General Problem Statement

In the following paragraphs, a general problem statement is given. More specific problem

statements for appropriate graph types and scenarios are provided in subsequent chapters.

4

Assume that we are given a weighted graph G = (V,E,w), with edge weights w : E −→ R≥1,

with a sink s ∈ V . We denote we to be the weight of edge e. Let A = {v1, v2, . . . , vd}, A ⊆ V

be the set of demand nodes. Let each node vi ∈ A have a non-negative unit demand. In the

SSBB case, a demand from vi induces a unit of flow to sink s and this flow is unsplittable. For

the MSBB case, each unit demand di = (si, ti) induces an unsplittable unit of flow from source

node si ∈ V to destination node ti ∈ V . Let A = {d1, d2, . . . , dr} be a set of demands that are

routed through paths in G. It is possible that some paths may overlap.

The demands from various demand nodes have to be sent to their respective destination

node(s) possibly routed through multiple edges in the graph G. This flow of demands forms

a set of paths P (A) = {p(v1), p(v2), . . . , p(vd)}, where p(vi) is the path from vi ∈ A to s. The

output for a given graph G, sink s and a set of demand nodes A is a set of paths P from the

nodes in A to their destination(s). We seek to find such a set of paths with minimal cost with

respect to a cost function described below.

There is an arbitrary concave fusion-cost function f at every edge where demand aggregates.

This f is the same for all the edges in G. Let p(v) be the path taken by a flow from v to its

destination s in G. Let ϕe(A) : {p(v) : e ∈ p(v) ∧ v ∈ A} denote the set of paths originating

from nodes in A that use an edge e ∈ E. Then, we define the cost of an edge e to be

Ce(A) = f(|ϕe(A)|) · we. The total cost of the set of paths is defined to be C(A) =
∑

eCe(A).

For a given set A of demand nodes in G, the corresponding set of paths P (A) would incur a

total cost denoted by C(A). For this set A, there is an optimal set of paths P ∗(A) with respect

to the total cost denoted by C∗(A). The competitive ratio for the cost of these two sets of

paths is given by C(A)
C∗(A)

.

The oblivious case arises when we do not know the set of demand nodes, the positions of

those nodes and the fusion-cost function in advance. So, given a graph G = (V,E) with sink

s ∈ V , an oblivious algorithm, Aobl, must compute a set of paths P (V) which induces P (A) for

5

any set A ⊆ V . The competitive ratio of this oblivious algorithm is given by:

C.R.(Aobl) = max
A⊆V

C(A)

C∗(A)
.

We aim to find an oblivious algorithm that minimizes the above competitive ratio.

1.3 Definitions

We provide several common definitions here that will be used in later chapters. Some termi-

nologies used later in the each of the chapters would be specific to that chapter and defined in

appropriate sections in that chapter.

Consider a weighted graph G = (V,E,w), where w : E → Z+. Let s ∈ V be the sink node.

For any two nodes u, v ∈ V let dist(u, v) denote the distance between u, v (measured as the

total weight of the shortest path that connects u and v). Given a subset V ′ ⊆ V , we denote

dist(u, V ′) the smallest distance between u and any node in V ′. Let D denote the diameter

of G, that is, D = maxu,v∈V dist(u, v). For any path p denote its length (number of edges) as

|p| or len(p). For any path p in G let the length be len(p) =
∑

e∈pwe, that is, the sum of the

weights of the edges in p.

Given a graph G = (V,E), the r-neighborhood of any vertex u ∈ V denoted N(u, r), is

defined as the set of nodes whose distance is at most r from u; namely, N(u, r) = {v | dist(u, v) ≤

r}. The r-neighborhood of a set of vertices V ′ ∈ V denoted by N(V ′, r), is defined as the set

of nodes whose distance is at most r from any node in v′. We adapt the definition of doubling-

dimension graph from Nieberg and Gupta et al. [Nie06, GKL03].

For any two nodes u, v ∈ V , their distance dist(u, v) is the length of the shortest path

that connects the two nodes in G. The diameter D is the length of the longest shortest path

in G. The radius of a node v is rad(v) = maxu∈V (dist(v, u)). The radius of G is defined as

6

rad(G) = minv(rad(v)). We denote by Nk(v) the k-neighborhood of v which is the set of nodes

distance at most k from v. For any set of nodes S ⊆ V , we denote by Nk(S) the k-neighborhood

of S which contains all nodes which are within distance k from any node in S.

A set of nodes X ⊆ V is called a cluster if the induced subgraph G(X) is connected. Let

Z = {X1, X2, . . . , Xk} be a set of clusters in G. For every node v ∈ G, let Z(v) ⊆ Z denote the

set of clusters that contain v. The degree of v in Z is defined as βv(Z) = |Z(v)|, which is the

number of clusters that contain v. The degree of Z is defined as β(Z) = maxv∈V βv(Z), which

is largest degree of any of its nodes. The radius of Z is defined as rad(Z) = maxX∈Z(rad(X)).

1.4 Related Work

1.4.1 Oblivious Network Design

Below, we present the related work on oblivious network design and Table 3.1 summarizes some

results and compares our work with their’s. What distinguishes our work with the others’ is

the fact that we provide a set of paths for the MSBB problem while others provide an overlay

tree for the SSBB version.

Goel et al. [GE03] build an overlay tree on a graph that satisfies triangle-inequality. Their

technique is based on maximum matching algorithm that guarantees (1+log k)-approximation,

where k is the number of sources. Their solution is oblivious with respect to the fusion cost

function f . In a related paper [GP09], Goel et al. construct (in polynomial time) a set of

overlay trees from a given general graph such that the expected cost of a tree for any f is

within an O(1)-factor of the optimum cost for that f . A recent improvement by Goel [GP10]

provides the first constant guarantee on the simultaneous ratio of O(1).

Jia et al. [JNRS06] build a Group Independent Spanning Tree Algorithm (GIST) that

constructs an overlay tree for randomly deployed nodes in an Euclidean 2 dimensional plane.

The tree (that is oblivious to the number of data sources) simultaneously achieves O(log n)-

7

approximate fusion cost and O(1)-approximate delay. However, their solution assumes a con-

stant fusion cost function. We summarize and compare the related work in Table 3.1.

Lujun Jia et al. [JLN+05] provide approximation algorithms for TSP, Steiner Tree and set

cover problems. They present a polynomial-time (O(log(n)), O(log(n)))-partition scheme for

general metric spaces. An improved partition scheme for doubling metric spaces is also presented

that incorporates constant dimensional Euclidean spaces and growth-restricted metric spaces.

The authors present a polynomial-time algorithm for Universal Steiner Tree (UST) that achieves

polylogarithmic stretch with an approximation guarantee of O(log4 n/ log log(n)) for arbitrary

metrics and derive a logarithmic stretch, O(log(n)) for any doubling, Euclidean, or growth-

restricted metric space over n vertices. They provide a lower bound of Ω(log n/ log log n) for

UST that holds even when all the vertices are on a plane.

Gupta et al. [GHR06] develop a framework to model oblivious network design problems

(MSBB) and give algorithms with poly-logarithmic approximation ratio. They develop obliv-

ious algorithms that approximately minimize the total cost of routing with the knowledge of

aggregation function, the class of load on each edge and nothing else about the state of the

network. Their results show that if the aggregation function is summation, their algorithm

provides a O(log2 n) approximation ratio and when the aggregation function is max, the ap-

proximation ratio is O(log2 n log log n). The authors claim to provide a deterministic solution

by derandomizing their approach. But, the complexity of this derandomizing process is unclear.

1.4.2 Non-Oblivious Network Design

There has been a lot of research work in the area of approximation algorithms for network

design. Since network design problems have several variants with several constraints, only a

partial list has been mentioned here. The “single-sink buy-at-bulk” network design (SSBB)

problem has a single “destination” node where all the demands from other nodes have to

be routed to. Network design problems have been primarily considered in both Operations

8

Research and Computer Science literatures in the context of flows with concave costs. The

single-sink variant of the problem was first introduced by Salman et al. [SCRS00]. They

presented an O(log n)-approximation for SSBB in Euclidean graphs by applying the method

of Mansour and Peleg [MP94]. Bartal’s tree embeddings [Bar94] can be used to improve their

ratio to O(log n log log n). A O(log2 n)-approximation was given by Awerbuch et al. [AA97]

for graphs with general metric spaces. Bartal et al. [Bar98] further improved this result to

O(log n). Guha [GMM01] provided the first constant-factor approximation to the problem,

whose ratio was estimated to be around 9000 by Talwar [Tal02]. The constant has been further

improved by Grandoni and Rothvoss [GR10].

1.5 Significance of the Research

Connectivity and facilities location are two important topics in network design with applications

in data communication, transportation, product planning, and VLSI designs. There are two

issues concerning these two topics: design and optimization. They involve combinatorial de-

sign and combinatorial optimization. No polynomial time algorithms are known for the design

and optimization for problems such as Steiner tree problems, topology network design, nonlin-

ear assignment problems, problems in facilities location and allocation and network problems

appearing in VLSI design.

Buy-at-Bulk Network Design Problem has numerous practical applications. A brief list of

applications is provided below.

VLSI Power Circuitry: The exponential scaling of feature sizes in semiconductor tech-

nologies has side-effects on layout optimization, related to effects such as interconnect delay,

noise and crosstalk, signal integrity, parasitics effects, and power dissipation, that invalidate

the assumptions that form the basis of previous design methodologies and tools.

9

In a microprocessor, there are several components that need power. To minimize power

usage and heat generation, microprocessors work by activating only those components that

need to work while others are inactive. So, at any instant of time, only a subset of components

must be powered by a single power circuitry. Also, this single circuit that connects all the

components must be of near-optimal length for all demand scenarios. The smaller the length

of the wires, the lower the IR-Drop (power dissipation).

Wireless Sensor Networks: Distributed Wireless Sensor Networks collect and send infor-

mation to a sink via multiple hops in the network. During this multihop relay of information, it

gets aggregated with other information at the fusion points (nodes). Typically, sensor networks

applications may care only about aggregate information (eg., average temperature, humidity

etc). An important aspect in such networks is the dynamism in the set of sources that needs

to send data. At various instances of time, different set of sources might have data to send to

the sink. Since wireless sensor nodes are energy constrained, they are incapable of computing

an optimal tree for every instance. In such cases, one needs to build a single tree to route data

to the sink.

Publish-Subscribe Systems: In the publish/subscribe (pub/sub) communication paradigm,

publishers and subscribers interact in a decoupled fashion. Publishers publish their messages

through logical channels and subscribers receive the messages they are interested in by subscrib-

ing to the appropriate services, which deliver messages through these channels. Designing an

overlay network for publish/subscribe communication in a system where nodes may subscribe

to many different topics of interest is of fundamental importance. For scalability and efficiency,

it is important to keep the degree of the nodes in the publish/subscribe system low.

In such systems, users publish or subscribe to information and such information flowing

through network can be aggregated. If a publisher produces web pages, the content distribu-

tion network replicates web pages to many locations so consumers can access at higher speed.

10

Another instance is the typical web-proxy installation problem where an ISP needs to deter-

mine how many web-proxies need to be installed at what places to properly serve its customers.

Furthermore, it has to determine what contents are needed to be pushed into those proxies and

at what rate they must be refreshed (if needed).

Oil/Gas Pipelines: There is a cost in laying oil/gas pipes to connect various stations/cities.

Naturally, the larger the capacity of a pipe and the greater the number of consumers using the

pipe, the cheaper would be price to pay for using the pipe (by the consumers). Hence, to build

an optimal pipeline, buy-at-bulk network design principles comes into play.

Data-Center Networks: Cloud Computing is quickly being adopted by various industries

and customers alike despite apparent issues in security and maintenance. A key factor in the

performance of cloud-computing is the network efficiency of the associated data-centers (DC).

Data centers are located geographically apart to serve customers in all regions. The inter-DC

network bandwidth poses a high-risk in performance (goodput) if the network is not properly

designed. This problem boils down to properly decomposing the network graph such that

customers at geographically well-separated regions are well-served.

11

Chapter 2

Doubling-Dimension Graphs

2.1 Overview

We consider the problem of constructing a single spanning tree for the single-sink buy-at-bulk

network design problem for doubling-dimension graphs. We compute a spanning tree to route

a set of demands along a graph G to or from a designated sink node. The demands could

be aggregated at (or symmetrically distributed to) intermediate edges where the fusion-cost is

specified by a non-negative concave function f . We describe a novel approach for developing

an oblivious spanning tree in the sense that it is independent of the number and location of

demand sources and cost function at the edges. We present a deterministic, polynomial-time

algorithm for constructing a spanning tree in low doubling-dimension graphs that guarantees

a log3D-approximation over the optimal cost, where D is the diameter of the graph G. With

a constant fusion-cost function, our spanning tree gives a O(log3D)-approximation for every

Steiner tree that includes the sink. We also provide a Ω(log n) lower-bound for any oblivious

tree in low doubling-dimension graphs.

2.1.1 Problem Statement

Assume that we are given a weighted graph G = (V,E,w), with edge weights w : E −→ R≥1,

with a sink s ∈ V . We denote we to be the weight of edge e. Let A = {v1, v2, . . . , vd}, A ⊆ V be

the set of demand nodes. Let each node vi ∈ A have a non-negative unit demand. A demand

from vi induces a unit of flow to sink s and this flow is unsplittable. The demands from various

demand nodes have to be sent to the destination node s possibly routed through multiple edges

in the graph G. This forms a set of paths P (A) = {p(v1), p(v2), . . . , p(vd)}, where p(vi) is the

path from vi ∈ A to s. The output for a given graph G, sink s and a set of demand nodes A is

12

a set of paths P from the nodes in A to s. We seek to find such a set of paths with minimal

cost with respect to a cost function described below.

There is an arbitrary concave fusion-cost function f at every edge where demand aggregates.

This f is the same for all the edges in G. Let p(v) be the path taken by a flow from v to s in

G. Let ϕe(A) : {p(v) : e ∈ p(v) ∧ v ∈ A} denote the set of paths originating from nodes in A

that use an edge e ∈ E. Then, we define the cost of an edge e to be Ce(A) = f(|ϕe(A)|) · we.

The total cost of the set of paths is defined to be C(A) =
∑

eCe(A).

For a given set A of demand nodes in G, the corresponding set of paths P (A) would incur a

total cost denoted by C(A). For this set A, there is an optimal set of paths P ∗(A) with respect

to the total cost denoted by C∗(A). The competitive ratio for the cost of these two sets of

paths is given by C(A)
C∗(A)

.

The oblivious case arises when we do not know the set of demand nodes in advance. So,

given a graph G = (V,E) with sink s ∈ V , an oblivious algorithm, Aobl, must compute a set

of paths P (V) which induces P (A) for any set A ⊆ V . The competitive ratio of this oblivious

algorithm is given by:

C.R.(Aobl) = max
A⊆V

C(A)

C∗(A)
.

We aim to find an oblivious algorithm that minimizes the above competitive ratio. We note

that SSBB is NP-Hard as the Steiner tree problem is a special of case of SSBB (when f(x) = 1)

[SCRS00].

Definition 2.1.1 (doubling-dimension of a Graph). The doubling-dimension of a graph G

is the smallest ρ such that every r-neighborhood is a subset of the union of at most 2ρ sets of

r/2-neighborhoods. If ρ is constant, then we say that G is of low doubling-dimension.

Observation 2.1.2. For a graph with doubling-dimension ρ, any 1-neighborhood contains

at most 2ρ nodes. Any 2k-neighborhood, can be covered by at most 2(k−l)ρ number of 2l-

neighborhoods, where k ≥ l ≥ 0.

13

Lemma 2.1.3. In any 2k-neighborhood, the size of any 2l-independent set of nodes does not

exceed 2(k−l+3)ρ, where k ≥ l ≥ 0.

Proof. Let U be 2k-neighborhood of a node v. Let I be a 2l-independent set of nodes in the 2k-

neighborhood of a node v. If 0 ≤ l ≤ 2, then |I| ≤ |U | ≤ 2(k+1)ρ ≤ 2(k−l+3)ρ (from Observation

2.1.2). If, l ≥ 3, from Observation 2.1.2, U can be covered by at most 2(k−l+3)ρ number of

2l−3-neighborhoods. Therefore, have that |I| ≤ 2(k−l+3)ρ.

We consider building an oblivious spanning tree for doubling dimension graphs. Dou-

bling dimension graphs has been used in many different contexts including compact routing

in wired networks [AGGM06, KRX08], traveling salesman, navigability and problems related

to modeling the structural properties of the Internet distance matrix for distance estimation

[KSW09, Fra07]. As noted by Fraigniaud [FLL06], it has become a key concept to measure

the ability of network to support efficient algorithms or to realize specific tasks efficiently. For

wireless networks, this concept has found many uses in solving many distributed communica-

tion problems [KMW05], distributed resource-management [GGMZ09], information exchange

among producers and consumers [FGNW06], and for determining other performance qualities

such as energy-conservation in wireless sensor networks [PP06].

2.1.2 Contribution

We seek to find a spanning tree T rooted at sink s for any doubling-dimension graph G. The

spanning tree T we build produces a set of unique paths P (V) from ∀v ∈ V to the sink s. This

T is oblivious since it is independent of the demand sources, and can accommodate any canon-

ical fusion-cost function. Our approach gives a deterministic, polynomial-time algorithm that

guarantees O(217ρ log3D) competitive ratio for graphs with doubling-dimension ρ. Therefore,

for low doubling-dimension graphs, we obtain a O(log3D) competitive ratio. When f(·) = c,

a constant, our spanning tree solution provides a O(log3D)-approximation to any Steiner tree

14

that contains the sink s. To our knowledge, these are the first spanning tree solutions to the

oblivious SSBB problem and also for the oblivious Steiner tree problem. We also give a lower

bound in n× n grids for the competitive ratio for any oblivious SSBB spanning tree T to be of

Ω(log n).

It is well-known in the research community that tree structures provide a very efficient

solution for managing data dissemination and aggregation in large-scale distributed systems.

Prominent architectures like the content-based publish-subscribe, peer-to-peer communication,

muticasting etc take advantage of efficient routing in trees and distributed maintenance of the

tables in each node of the network.

The motivation for us to build a spanning tree not only comes from the above mentioned

advantages and current use, but also because of the fact that it has the most compact form of

data structure in the sense that they have the minimum number of edges connecting all the

nodes (n− 1). Furthermore, their inherent acyclic property conveniently avoids inefficient use

of the network due to unnecessary cyclic demand traversal and hence avoids increased costs.

Since there are no routing loops formed during the tree construction, any design of routing

algorithms on trees is greatly simplified.

We build a spanning tree based on the following technique. We partition the nodes in a

hierarchical fashion. The selection of nodes for a given ‘level’ of hierarchy is based on finding

d-independent nodes, where d is proportional to that level. Nodes of successive levels are

connected by bounded length paths. The intersecting paths that may potentially form cycles

are appropriately modified to result in a spanning tree. A modified spanning tree is built from

the spanning tree to ensure that all paths have appropriate end-nodes. Analysis is done on this

modified tree.

To demonstrate the basic techniques and concepts, we initially build an overlay tree and

produce a logD competitive ratio. An overlay tree is a tree where each edge in the tree could

be a path in the underlying physical infrastructure. Shortest paths in an overlay tree, when

15

projected to its underlying network, could have several intersections leading to cycles. Our

initial overlay tree construction and analysis gives an insight for the analysis of the spanning

tree that we build subsequently. Since the overlay tree may result in having cycles, our main

algorithm for constructing a spanning tree extends the overlay tree algorithm to obtain a

competitive ratio of O(log3D).

We perform simulation to compare the cost of the spanning tree with trees from several

prior related work and a few well known trees (Minimum Spanning Tree and Shortest-Paths

Tree). For comparison, we generate the trees and costs by simulation using NetworkX [HSS08].

The simulations corroborate the analytical results and show that the oblivious spanning tree

provides very competitive costs and in fact provides better costs than the well known trees.

2.2 Definitions

A set of nodes I is said to be a d-independent set if for each pair u, v ∈ I, u 6= v, dist(u, v) ≥ d.

Given a set of nodes H ⊆ V and parameter d, we define Maximal Independent Set of G for

distance d as I = MIS(G,H, d) to be an arbitrary maximal d-independent set of nodes in

G such that H ⊆ I. Note that, to begin with, the nodes in the given set H must also be

d-independent. MIS(G,H, d) can be constructed in polynomial time with a simple greedy

algorithm.

2.3 Technique Used

Our spanning tree construction is based on the following techniques. We partition the nodes

in a hierarchical fashion. The selection of nodes for a given ‘level’ of hierarchy is based on

their mutual distances proportional to the level. Nodes of successive levels are connected by

shortest paths. The intersecting paths are appropriately modified to result in a spanning tree.

A modified tree is built from the spanning tree to ensure that all paths have appropriate end-

16

nodes. Analysis is done on this modified tree.

2.4 Overlay Tree

We describe how to construct an overlay tree from a connected graph G = (V,E). This will be

useful for the design and analysis of the spanning tree algorithm.

The overlay tree T = (VT , ET) is built as follows. Let κ = dlogDe, where D is the diameter

of graph G. The overlay tree T consists of κ + 1 levels of node sets, VT = I0 ∪ · · · ∪ Iκ, which

are selected in a top down manner. The root of T is s and Iκ = {s}. Given Ii+1, we define

Ii = MIS(G, Ii+1, 2
i). The leaves of T are all the nodes in G, namely, I0 = V . Members of Ii

are also called leaders at level i. Note that some leaders could belong to multiple levels (eg.,

the sink s is a member of all levels). For any node u ∈ Ii, i < κ, its parent in T is chosen to

be a leader in Ii+1 ∩N(u, 2i+2 − 2) which is closest to s (a parent is guaranteed to exist due to

the maximal independent set property of Ii+1).

For every edge (u, v) ∈ ET , where u ∈ Ii and v ∈ Ii+1, we select one of the shortest paths

from u to v to be the designated path from u to v to represent edge (u, v). In case u = v, the

designated shortest path has length zero. For any node v the tree T defines a unique path

q(v) = (e0, e1, . . . , eκ−1) ∈ T from the leaf v to the root s. The path q(v) is translated to a

unique path p(v) = (p0(v), p1(v), . . . , pκ−1(v)) from v to s in G by replacing each edge ei ∈ q(v)

with the respective designated shortest path pi(v). We will refer to pi(v) as the layer-i subpath

of p(v).

2.4.1 Basic Properties of Overlay Tree

For each node u ∈ Ii, let Zu
i denote all the leaves in T which appear in the subtree of T rooted

at u at level i. The overlay tree T naturally defines a hierarchical partition of G because for

any v 6= u, Zu
i 6= Zv

i and for all y ∈ G, y ∈ Zx
i for any x.

17

We will use the following parameters for the analysis of overlay trees. Please note that the

same set of parameters with appropriately modified values will be later used in section 2.7 for

the modified tree analysis.

µi = 2i+2 //upper bound on |pi(u)|

δi = 2i+2 //upper bound on the radius of Zu
i

φi = 2i //lower bound on dist(s, Zu
i), u 6= s

ξi = 2δi + 2φi //coloring radius

χ = 27ρ //coloring of Ii with radius ξi

For each path pi(v) we have |pi(v)| ≤ 2i+2 − 2 < µi, and hence we obtain:

Observation 2.4.1. For any node v ∈ V , |pi(v)| < µi.

Lemma 2.4.2. For any v ∈ Zu
i , dist(v, u) < δi.

Proof. Let p′(v) = (p0(v), p1(v), . . . , pi−1(v)) be the respective path in the overlay tree from v

to u. From Observation 2.4.1, |pj(v)| < µj = 2j+2. Thus, |p′(v)| =
∑i−1

j=0 |pj(v)| <
∑i−1

j=0 2j+2 <

2i+2 = δi.

Lemma 2.4.3. N(s, 2i − 1) ⊆ Zs
i .

Proof. Consider a node v ∈ Zs
i , with v 6= s. Suppose that v ∈ Ij, where j < i. Let `j+1 denote

the parent of v. According to the parent selection criterion, `j+1 ∈ Ij+1 ∩ N(v, 2j+2 − 2) and

`j+1 is closest to s.

We first show that if v ∈ N(s, 2i−1) then `j+1 ∈ N(s, 2i−1). We only need to show that B =

Ij+1∩N(s, 2i−1) 6= ∅. Let rv denote the shortest path from v to s. If |rv| ≤ 2j+2−2 then s ∈ B,

and B 6= ∅. Suppose that |rv| > 2j+2 − 2. Take a node x ∈ rv such that dist(x, v) = 2j+1 − 1.

Let rx denote the subpath of rv from x to s. If we consider a neighborhood N(x, 2j+1 − 1),

18

then, there is a node y ∈ Ij+1 such that y ∈ N(x, 2j+1 − 1) and dist(x, y) ≤ 2j+1 − 1. Let ry

denote the shortest path from y to s. We have that |ry| ≤ |rx|+ 2j+1− 1 = |rv|. Consequently,

y ∈ B, and B 6= ∅.

We can easily see that if v ∈ Ii−1 and v ∈ N(s, 2i − 1), then the parent of v is s, and thus

v ∈ Zs
i . Using an induction on j = i − 1, . . . , 0, we obtain that if v ∈ Ij and v ∈ N(s, 2i − 1)

then v ∈ Zs
i . Consequently, when we consider j = 0, we obtain that N(s, 2i − 1) ⊆ Zs

i .

From Lemma 2.4.3, we obtain the following corollary:

Corollary 2.4.4. For any u ∈ Ii, u 6= s, dist(s, Zu
i) ≥ φi.

Let Xi = (Ii, EXi), be a graph such that for any two u, v ∈ Ii, (u, v) ∈ EXi if and only if

dist(u, v) ≤ ξi.

Lemma 2.4.5. Graph Xi admits a vertex coloring with at most χ colors.

Proof. Let v ∈ Ii. The nodes adjacent to v in Ii is the set Y = N(v, ξi) ∩ Ii. Since Ii is a

2i-independent set, and ξi = 2δi + 2φi = 2i+3 + 2i+1 ≤ 2i+4, from Lemma 2.1.3, we obtain

|Y | ≤ 2((i+4)−i+3)ρ = 27ρ. Consequently, graph Xi has degree at most 27ρ − 1, and by a greedy

algorithm it can be colored with at most χ = 27ρ colors.

2.4.2 Competitive Analysis of Overlay Tree

Let A ⊆ V denote an arbitrary set of source nodes. Let C∗(A) denote the cost of the of the

optimal path set from A to s. Let C(A) denote the cost of the paths given by the overlay tree

T . We will bound the competitive ratio C(A)/C∗(A).

The cost C(A) can be bounded as a summation of costs from the different layers as follows.

For any edge e let ϕe,i(A) = {pi(v) : (v ∈ A) ∧ (e ∈ pi(v))} be the set of layer-i subpaths that

use edge e. Recall that the fusion-cost function f : Z+ → R+ is concave, non-decreasing and

19

has the subadditive property f(x1 +x2) ≤ f(x1)+f(x2), ∀x1, x2, (x1 +x2) ∈ Z+ where f(0) = 0.

Denote by Ce,i(A) = f(|ϕe,i(A)|) · we the cost on the edge e incurred by the level-i subpaths.

Since f is subadditive, we get Ce(A) ≤
∑κ−1

i=0 Ce,i(A). Let Ci(A) =
∑

e∈E Ce,i(A) denote the

cost incurred by the layer-i subpaths. Since C(A) =
∑

e∈E Ce(A), we have that:

C(A) ≤
κ−1∑
i=0

Ci(A). (2.1)

Let Aui = A ∩ Zu
i . We obtain the following lower bound on C∗(A):

Lemma 2.4.6. For any ξi-independent set I ′ ⊆ Ii, C
∗(A) ≥ R(I ′), where R(I ′) =

∑
u∈I′\s f(|Aui |)·

φi.

Proof. From Lemma 2.4.2, any node in Aui is at distance at most δi − 1 from u. Since any pair

u, v ∈ I ′ \ {s}, u 6= v, are at least ξi = 2δi + 2φi distance apart, any two nodes x ∈ Aui and

y ∈ Avi are at least 2φi distance apart. From Corollary 2.4.4, s /∈ N(Aui , φi − 1). Let Y (Aui) be

the set of edges with one node in N(Aui , φi − 1) and the other outside N(Aui , φi − 1). The set

Y (Aui) forms a cut that has to be crossed by the paths in Aui in order to reach s. The smallest

cost for crossing the cut is when the paths of Aui are combined through the fusion function f .

Therefore, each path from Aui requires length at least φi in order to reach s. Thus, we have

that the optimal cost of sending the demands from Aui to s is at least f(|Aui |) · φi. Since for

each u ∈ I ′ \ s the respective cuts are disjoint, we obtain: C∗(A) ≥
∑

u∈I′\s f(|Aui |) · φi.

Lemma 2.4.7. Ci(A) ≤ Qi, where Qi =
∑

u∈Ii\{s} f(|Aui |) · µi.

Proof. Note that ϕe,i(A) =
⋃
u∈Ii ϕe,i(A

u
i). Since f is subadditive, for any edge e,

Ce,i(A) = f(|ϕe,i(A)|) · we ≤
∑
u∈Ii

f(|ϕe,i(Aui)|) · we.

Since for e ∈ pi(u), |ϕe,i(Aui)| = |Aui |, and for e /∈ pi(u), |ϕe,i(Aui)| = 0, using Observation 2.4.1

20

we obtain:

Ci(A) ≤
∑
u∈Ii

f(|Aui)|) · |pi(u)| ≤
∑

u∈Ii\{s}

f(|Aui)|) · µi.

Lemma 2.4.8. Ci(A) ≤ C∗(A) · χ · µi/φi.

Proof. From Lemma 2.4.5, graph Xi accepts a vertex coloring with at most χ colors. Let Iji

denote the set of nodes of Xi which receive color j ∈ Ψ = {1, . . . , χ}. Note that Ii =
∑

j∈Ψ I
j
i ,

and Iji ∩ Iki = ∅ for any j 6= k. Let Qj
i =

∑
u∈Iji \{s}

f(|Aui |) · µi. We have that Qi =
∑

j∈Ψ Q
j
i .

Let Qj∗

i = maxj∈ΨQ
j
i . Thus, Qi ≤ |Ψ| · Qj∗

i ≤ χ · Qj∗

i . From Lemma 2.4.7, we have that

Ci(A) ≤ Qi ≤ χ ·Qj∗

i . Further, from Lemma 2.4.6, C∗(A) ≥ R(Ij
∗

i) = Qj∗

i ·φi/µi. Consequently,

Ci(A) ≤ C∗(A) · χ · µi/φi.

Since A is chosen arbitrarily, the following theorem follows immediately from Equation 2.1

and Lemma 2.4.8:

Theorem 2.4.9 (Oblivious Competitive Ratio of Overlay Tree). The oblivious competitive ratio

of the overlay tree T is C.R.(T) ≤ χ · (1 + logD) ·maxi{µi/φi}.

From Theorem 2.4.9, we immediately obtain the following corollary when we replace the

values of the parameters.

Corollary 2.4.10. The oblivious competitive ratio of the overlay tree T is C.R.(T) = O(27ρ ·

logD).

2.5 Spanning Tree Construction

We start with an informal description of the construction of the spanning tree. We build the

tree in a hierarchical manner that has κ = O(logD) levels. A formal description appears in

21

Algorithm 1. The terms and notations used here are the same as defined for the overlay tree

construction.

Algorithm 1: Spanning Tree

Input: Graph G with sink s.
Output: A spanning tree Ts.

1 P ← ∅; Iκ ← {s} ; // κ← dlogDe
2 P reg ← ∅; P pr ← ∅ ; // List of regular and pruned paths

3 foreach level i = κ− 1 to 0 do
4 Ii ←MIS(G, Ii+1, 2

i);
5 foreach v ∈ Ii do
6 pi(v)← FindPath(v, i);
7 if pi(v) intersects any path at level > i at point u then

// Prune path pi(v) by removing segment from u to `
8 p′i(v)← path segment from v to u;
9 P pr

i ← P pr
i ∪ p′i(v);

10 else
11 P reg

i ← P reg
i ∪ pi(v);

12 end

13 end

14 end

15 P ←
⋃i=κ−1
i=0 P reg

i ∪
⋃i=κ−1
i=0 P pr

i ;
16 return Ts ; // Formed by paths in P

The construction of the hierarchical levels of independent nodes is top-down. Ii is computed

by MIS(G, Ii+1, 2
i), for 0 ≤ i ≤ κ − 1. Ii will contain all the 2j-independent nodes of higher

levels j, i < j ≤ κ as well as a 2i-independent set of nodes. We enforce the constraint that

s ∈ Ii for every Ii. Note that each node v ∈ Ii \ Ii+1 has to be within distance 2i+2 − 2 to at

least one node in Ii+1 (otherwise v must be a member of Ii+1).

Paths are also constructed in a top-down fashion. The path from any level i, denoted pi(v),

starts at some leader v at level i and ends at a leader at level i+1. The set of all paths at level i is

denoted as Pi and the set of all paths of all levels is denoted by P = {Pκ−1, Pκ−2, . . . , P2, P1, P0}.

The path computation is detailed in the function FindPath.

The main objective of FindPath function is to ensure that any node u at level i is in

N(s, 2i − 1) and that all the nodes in that neighborhood falls inside the subtree Zs
i rooted at

22

Function FindPath(u, j)

Input: Node u at level j.
Output: A path pj(u), that connects u to `j+1 ∈ Ij+1.

1 Let rk be fixed rings with radius 2k − 1 around s, ∀k ≤ κ and k > j + 3;
2 if dist(u, s) ≤ 2j+3 − 1 then
3 `j+1 ← s;
4 pj(u)← Shortest path from u to `j+1;
5 return pj(u);

6 end
7 Let rk be the first fixed ring intercepted by the shortest path from u to s;
8 if dist(u, rk) ≤ 2j+2 − 2 then
9 Let y be the intersection point on the ring rk with the shortest path from u to s ;

// dist(u, y) ≤ 2j+2 − 2
10 Let q1 be a path segment from u to y;
11 Let x be a point on the shortest path from u to s and dist(y, x) = 2k−1 − 1;
12 Let q2 be a path segment from y to x;
13 u′ ← v ∈ N(s, 2k − 1) ∩ Ij+1 and dist(x, v) ≤ 2k−1 − 1;
14 Let q3 be a path segment from x to u′;
15 pj(u)← q1 + q2 + q3;
16 return pj(u);

17 end
18 if dist(u, rk) > 2j+2 − 2 then
19 Let x be a point on the shortest path from u to s and dist(u, x) = 2k−1 − 1;
20 Let q1 be a path segment from u to x;
21 u′ ← v ∈ N(s, 2k − 1) ∩ Ij+1 and dist(x, v) ≤ 2k−1 − 1;
22 Let q2 be a path segment from x to u′;
23 pj(u)← q1 + q2;
24 return pj(u);

25 end

23

s at level i. The function FindPath enforces this condition by computing paths that have the

following properties:

1. If there is a node u at level i ≤ j + 3, a shortest path to s is directly built.

2. If there is a node u at level i > j + 3 and is close to a fixed ring rk, then, it finds a

(i+ 1)-level leader inside the (2k − 1)-ring. Once a leader is chosen, a special path pi(u)

is built from u to `i+1. Path pi(u) is built such that for each node v 6= u on pi(u),

dist(v, s) ≤ dist(u, s). The existence of such a leader `i+1 is guaranteed.

The Function FindPath ensures that if path pi(u) crosses a fixed ring rk, then, the path

does not cross back and go outside rk. In order to satisfy this property, FindPath guarantees

to find a leader inside rk. Hence, any path from a node that is inside N(s, 2i − 1) stays within

that neighborhood. This guarantees that N(s, 2i − 1) ⊆ Zs
i . Details are in Lemma 2.7.3.

When paths for all levels are built, the resulting structure may not be a tree. It could

result in a graph that might have intersecting paths. Define regular paths as paths that do

not intersect any (higher-level) path on their way to their end-nodes. The paths of Pκ−1, are

regular paths, since there were no higher-level paths to intersect and are included in P reg
κ−1.

Define pruned paths as those paths that intersect paths of higher level. If a path pi(v)

intersects a path pj(v
′) (j > i) along its way to `i+1, pi(v) is pruned from the intersection point

to its destination. Such paths are included in P pr
i . This pruning of intersecting paths ensures

the structural property of a spanning tree (see Figure 2.1).

Note that regular paths of the same level could intersect and continue on different directions

to reach a common leader. In this case, one of the paths is modified to use the same segment

as the other after the intersection point. Another scenario is when two paths (say from u and

v of level i) intersect at m and proceed to their respective end nodes x and y. In this case,

either v or u will choose a common leader and appropriately modify its path. In both these

24

scenarios, the resulting paths remain regular and avoids cycles when they overlap. Note that

in both the cases, the path segments, after intersection, should have the same length. We have

not mentioned this aspect in Algorithm 1.

The spanning tree algorithm executes in polynomial time with respect to the size of the

graph.

2.6 Modified Tree Construction

The pruned paths in the spanning tree T will not have leaders as end-nodes. To ensure that

end-nodes of all paths are leaders, we modify T to T . The main goal is to merge pruned paths

to form longer paths whose end nodes are leaders in some level. We then find ‘pseudo-leaders’

I i among the intermediate nodes in the merged paths that serve as end nodes for these pruned

paths.

We begin with an overview of the modified tree construction. We construct T from T

by assigning alternate leaders to those paths whose ‘upper’ sections have been pruned. We

first begin by assigning levels to all the nodes of regular paths by AssignLevels function

in AssignLevels and including those paths in T . Then, we begin a top-down, level-by-level

process where we ‘modify’ the pruned paths by extending the pruned paths to their newly

assigned alternate leaders. Note that a modified path could be a concatenation of multiple

pruned paths. Then, we assign levels to the nodes of the recently modified path as well and

include this modified path in T . The end of this process results in a modified tree T . A more

formal description appears in Algorithm 2 Modified Tree .

Define AssignLevels(pi(v), H, i), where H is a pair of end-nodes of pi(v), to assign levels

to all the nodes of pi(v) by identifying maximal independent nodes (excluding the end nodes

of pi(v)). This is given in more detail in the function AssignLevels. Levels are assigned in

the range (i− 1) to 0. A modified path is connected to an alternate leader called pseudo-leader

25

by the function ModifyPath(pi(u), pj(v)) which chooses the nearest level-(i+ 1) node on pj(v)

from the intersection point. The existence of a pseudo-leader in any given path pj(v), j > i, is

justified by the Lemma 2.6.1.

Function AssignLevels(pi(v), H, i)

Input: Path pi(v), set of end-nodes H of pi(v) , level i.
Output: Assignment of levels to all nodes in pi(v).

1 Lλ ← φ ; // Set of 2λ-independent nodes

2 for λ← (i− 1) to 0 do
// Find 2λ-independent nodes at levels λ = (i− 1), (i− 2), . . . , 1, 0.

3 Lλ ←MIS(pi(v), H, 2λ);
4 Assign level λ to nodes in Lλ.

5 end

Function ModifyPath(pi(u), pj(v))

Input: Paths pj(v) and pi(u) where pi(u) intersects pj(v) and j > i
Output: A modified path pi(u).

// Let pi(u) start from u /∈ pj(v) and intersect at y ∈ pj(v) along its path

to its leader `i+1.

1 v′ ← Identify a level-(i+ 1) node v′ ∈ pj that is close to y and in the direction of s;
2 pai (u)← subpath from u to y in pi(u);
3 pbi(y)← subpath from y to v′ in pj(v);
4 p̄i(u)← pai (u) + pbi(y) ; // Concatenate pai (u) and pbi(y).
5 return pi(u);

Lemma 2.6.1 (Presence of a Pseudo-Leader). The ModifyPath(pi(u), pj(v)) function

guarantees selection of a (i+ 1)-level pseudo-leader.

Proof. Suppose path pi(u) intersects a higher-level path pj(v), i < j. Let the start-node of pi

be u and let the end-node of pj(v) be w. Note that a path pj(v) goes from level j to level j+ 1.

There could be two cases for the presence of a pseudo-leader in pj(v). If level of w is i+1, then,

w itself acts as a pseudo-leader for u. If level of w is greater than i+ 1, then, pj(v) must have

some nodes (within its end-nodes) that have been assigned to level i+ 1 (by the AssignLevels

function) . Hence, in either case, a pseudo-leader is guaranteed to be found in pj(v) for u.

Consider that we are at some level i where 0 ≤ i ≤ κ− 1 and suppose that there are several

26

Algorithm 2: Modified Tree

Input: Spanning Tree T rooted at s.
Output: A modified tree T .

1 T ← φ ; // T = P = {Pκ−1, Pκ−2, . . . , P1, P0}
// Assign Levels to all nodes in all regular paths in T.

2 i← κ− 1 ; // start from second level from top

3 while i ≥ 0 do
4 foreach pi(v) ∈ P reg

i do
// v and w are the start and end nodes of path pi

5 H ← {v, w} ; // v is at same level as that of i.
6 AssignLevels (pi(v), H, i);

7 T ← T ∪ pi(v);

8 end
9 i← i− 1;

10 end

// Pruned paths in T - Modify paths and assign levels.

11 i← κ− 2;
12 while i > 0 do
13 foreach pi(u) ∈ P pr

i do
14 pi(u)← ModifyPath(pi(u), pj(v)) ; // pi(u) intersects pj(v), j > i and v′ be

the elected pseudo-leader. pj(v) may be a modified path itself.

15 T ← T ∪ pi(u);
16 H ← {u, v′} ; // u and v′ are the start and end nodes of pi(u).
17 AssignLevels (pi(u), H, i);

18 end
19 i← i− 1;

20 end

21 return T ;

pruned paths in Pi. Let pi(u) ∈ Pi be one such path and let y ∈ pj(v) be the intersection point,

where j > i. A pseudo-leader, v′, is chosen on pj(v) using ModifyPath (pi(u), pj(v)) in Modify-

Path . This pseudo-leader is chosen in such a way that it is closer to both s and y. Such a leader

is always guaranteed to exist because the connection from a pruned path occurs to a modified

path that has already elected new pseudo-leaders towards the direction of s. Note that this may

alter Ij to Ij by replacing the original leader by the pseudo-leader. The path pi(u) is extended

from y to v′ and this new extended path, denoted by pi(u), replaces pi(u) in the modified tree

T . The the upper bound on the length of pi(u) is given by Lemma 2.7.1. Once a new path pi(u)

is established, all the nodes in it are assigned levels using (AssignLevels(pi(u), H, i)), where

27

u

v’v

b

a

b’

sinkLevel K

Level K-1

Level K-2

Level K-3

y

x

(a) Intersecting paths

u

v’v

b

a

b’

sink

y

x

(b) Pruned paths y, b and
x, v′.

u

v’v

b

a

b’

sink

(c) Modified Paths pa,b′ and
pb′,v

Figure 2.1: Pruning and Tree Modification.

H is the set of end-nodes of pi(u)). This procedure of modifying pruned paths, replacing the

old pruned paths by new, extended, modified paths and assigning levels to all nodes in those

paths is repeated for all levels down to 0. The resulting tree is a modified tree with normal

leaders and pseudo-leaders for respective types of paths.

Figure 2.1 gives an example of intersecting path and its modification to reach a pseudo-

leader and form a modified path. At level κ− 2, we see there is a path from u to v. The path

from b′ to v′ intersects the former path at x. This path is pruned from the point of intersection

x till v′ and a new connection is made from x to v, resulting in a new path from b′ to v.

2.7 Analysis of Modified Tree

We will analyze the performance of the modified tree T . The analysis is similar to the analysis

of the overlay tree in section 2.4. We will focus on finding in T the respective values of the

parameters µi, δi, φi, ξi and χ given in Section 2.4.1. With these values, we can immediately

apply the results of section 2.4.2 to obtain a competitive ratio of T .

The modified tree T naturally defines a hierarchical partition of G. This tree has κ levels

of pseudo-leaders I0 to Iκ = s. For each node u ∈ I i, let Z
u

i denote all the leafs in T which

appear in the subtree of T rooted at u at level i. For our analysis, we will use the following

28

parameters:

µi = 2i+3 //upper bound on |pi(u)|

δi = 2i+3 //upper bound on the radius of Z
u

i

φi = 2i //lower bound on dist(s, Z
u

i), u 6= s

ξi = 2δi + 2φi //coloring radius

χ = 217ρ log2D //coloring of I i with radius ξi

A path pji (v) could be intersected by multiple lower-level paths. Even though the leaders at

a level i are sufficiently far off, due to intersection by other paths, the leader at level i might be

close to many leaders of lower level paths. However, the number of such leaders that are close

is limited. Lemmas 2.7.5, 2.7.6 and 2.7.7 establishes the maximum number of pseudo-leaders

in a given neighborhood.

Lemma 2.7.1. |pi(u)| < µi.

Proof. Consider a path pi(u) ∈ T that starts at u /∈ pj(v), (j > i), and intersects another path

pj(v) at y ∈ pj(v). Since pi(u) is a pruned path, its length from u to the intersection point y

is at most 2i+2 − 3 (if it was 2i+2 − 2 or more, point y would have been its original leader).

ModifyPath will attempt to seek an (i + 1)-level node (pseudo-leader) on pj(v) that is close

to y and in the direction of s (Lemma 2.6.1). Note that y itself cannot be the pseudo-leader

for u because, if it was, then, pi(u) would not have been a pruned path. The distance from

y to a pseudo-leader v′ on pj(v) would be at most 2i+2 − 2 because if this distance was more

than 2i+2 − 2, we would have found another pseudo-leader v′′ that is 2i+1 distance away from

v′ and closer to y. This is due to the presence of (2i+1)-independent set nodes on this path

pj(v) computed by AssignLevels. Note that y cannot be an end-node of pj(v) and v′ could

be one of the end-nodes of pi(v). Hence, the length of pi(u), denoted by µi, could be at most

(2i+2 − 3) + (2i+2 − 2) < 2i+3. Note that pj(v) itself could be a stretched pruned path and the

29

upper bound holds irrespective of the length of pj(v).

Lemma 2.7.2. For any v ∈ Zu

i , dist(v, u) < δi.

Proof. Consider a path pi(v) ∈ Zu

i . In the worst case, this path could be a concatenation of

several modified paths, ranging from level 0 to i− 1. The total length of pi(v) would be equal

to the sum of maximum lengths of each of those segments:
∑i−1

j=0(2i+2) < 2i+3.

Lemma 2.7.3. N(s, 2i − 1) ⊆ Z
s

i .

Proof. Consider a node v ∈ N(s, 2i − 1), v 6= s. Suppose that v ∈ Ij, where j < i. Let `j+1

denote the parent of v. This parent `j+1 could be a pseudo-leader on a modified path pj(v).

We observe that all the nodes in N(s, 2i−1) use internal special paths to s due to FindPath

algorithm. This is because a path from a node v to its leader is always towards s. A pseudo-

leader `j+1 for a modified path can be found within 2(2i+2 − 2) distance from v such that `j+1

is within N(s, 2i − 1) and closer to sink s, due to Lemma 2.7.1. Since the pseudo-leader of v

is found inside N(s, 2i − 1), v ∈ Zs

i . By induction on j = i− 1, . . . , 0, we obtain that if v ∈ Ij

and v ∈ N(s, 2i − 1), then v ∈ Z
s

i . Consequently, when we consider j = 0, we obtain that

N(s, 2i − 1) ⊆ Z
s

i .

From Lemma 2.7.3, we obtain the following corollary:

Corollary 2.7.4. For any u ∈ I i, u 6= s, dist(s, Z
u

i) ≥ φi.

Lemma 2.7.5 (Max path segments). The total number of path segments p(v) ∈ T at level

i or higher that cross N(x, 2i+5) is at most 210ρ · (κ− i+ 1).

Proof. We know, by construction, that the length of a path pi+j(v) ∈ T is at most 2i+j where

0 ≤ j ≤ (κ − i) and that there is at most one leader `i+j ∈ Ii within N(x, 2i+j

2
). Since we are

looking at the number of path segments pi+j(v) that go through N(x, 2r), where r = i + 5,

30

consider a large neighborhood N(x, (2i+j + 2r)) and determine the number of neighborhoods of

radius 2i+j

2
; N(x, 2i+j

2
). If r < (i+j), then, (2i+j+2r) < 2 ·2i+j. From Lemma 2.1.3, the number

of path segments at level i or higher that cross N(x, 2r) is at most 2ρ((i+j+1)−(i+j−1)+3) = 25ρ. If

r ≥ (i+ j), then, (2i+j + 2r) < 2 · 2r = 2r+1. From Lemma 2.1.3, the number of path segments

at level i or higher that cross N(x, 2r) is at most 2ρ((r+1)−(i+j−1)+3) = 2ρ(r−i+5). Since r = i+ 5,

max(24ρ, 2ρ(r−i+5)) = max(24ρ, 210ρ) = 210ρ. For all paths that span the levels from i to κ, the

total number of path segments that cross N(x, 2i+j−1) is equal to 210ρ · (κ− i+ 1).

Lemma 2.7.6 (Max modified paths in a path segment). Consider a path segment p(v) ∈ T

that crosses N(x, 2i+5). The total number of modified paths p(v) ∈ T at level i or higher that

use nodes in p(v) ∩N(x, 2i+5) is at most 27ρ · (κ− i+ 1).

Proof. Let Q = p(v)∩N(x, 2r), where r = i+5. From Lemma 2.7.1, we know that the maximum

length of any modified path pi+j(v) would be 2i+j+3. To find the total number of modified paths

pi+j(v) that passes through Q, we consider a larger neighborhood N(x, 2i+j+3 + 2r) and find

the number of N(y, 2
i+j+3

2) that would cover the larger neighborhood. Note that each pi+j(v)

has start node in Ii+j. If r < (i + j + 3), then, (2i+j+3 + 2r) < 2 · 2i+j+3 = 2i+j+4. By

Lemma 2.1.3, the number of path segments at level i or higher that cross N(x, 2r) is at most

2ρ((i+j+4)−(i+j+2)+3) = 25ρ. If r ≥ (i + j + 3), then, (2i+j+3 + 2r) < 2 · 2r = 2r+1. From

Lemma 2.1.3, the number of path segments at level i or higher that cross N(x, 2r) is at most

2ρ((r+1)−(i+j+2)+3) = 2ρ(r−i+2). We consider max(24ρ, 2ρ(r−i+2)) = max(24ρ, 27ρ) = 27ρ for our

analysis. Since j ∈ [0, (κ− i)], the total number of paths that would cross N(x, 2i+j+2) is equal

to 27ρ · (κ− i+ 1).

Lemma 2.7.7. The total number of pseudo-leaders at level i, which are inside N(x, 2i+5) is at

most 217ρ · (κ− i+ 1)2.

Proof. From Lemma 2.7.5, there are 210ρ · (κ− i+1) path segments pi+j(v) ∈ T , j ≥ 0, crossing

N(x, 2r), where r = i + 5. From Lemma 2.7.6, each such path segment can have multiple

modified path segments at level i or higher passing through it (≤ 27ρ · (κ − i + 1)), the total

31

number of modified path segments that cross N(x, 2r) would be at most 217ρ · (κ− i+ 1)2. This

gives also an upper bound to the number of pseudo-leaders at level i or higher.

Let X i = (I i, EXi
), be a graph such that for any two u, v ∈ I i, (u, v) ∈ EXi

if and only if

dist(u, v) ≤ ξi.

Lemma 2.7.8. Graph X i admits a vertex coloring with at most χ = 217ρ · (κ− i+ 1)2 colors.

Proof. Let v ∈ I i. The nodes adjacent to v in I i is the set Y = N(v, ξi) ∩ I i. Since I i is a

2i-independent set, and ξi = 2δi + 2φi ≤ 2 · 2i+3 + 2 · 2i = 2i+4 + 2i+2 ≤ 2i+5. From Lemma

2.7.7, we obtain |Y | ≤ 217ρ · (κ− i+ 1)2.

Consequently, graph X i has degree at most [217ρ ·(κ− i+1)2]−1, and by a greedy algorithm

it can be colored with at most χ = 217ρ · (κ− i+ 1)2 ≤ 217ρ log2D colors.

Now, the remaining part of the analysis identical to that in Overlay Tree (2.4.2), where

instead of the parameters µi, δi, φi, ξi and χ, we use µi, δi, φi, ξi and χ. We derive the

competitive ratio of the modified tree as below.

Theorem 2.7.9 (Oblivious Competitive Ratio of Modified Tree). The oblivious competitive

ratio of the modified tree T is C.R.(T) ≤ χ · (1 + logD) ·maxi{µi/ξi}.

From Theorem 2.7.9, we immediately obtain the following corollary when we replace the

values of the parameters.

Corollary 2.7.10. The oblivious competitive ratio of the modified tree T is C.R.(T) = O(217ρ log3D).

2.8 Lower Bound

We now present an overview of the technique used for computing the lower-bound. The lower-

bound given by Imase and Waxman in [IW91] doesn’t work in our case. Their technique works

32

for non-low-doubling-dimension planar graphs. Therefore, we give a new lower-bound for the

spanning tree construction for low doubling-dimension graphs.

For our study, we consider a special class of planar graphs commonly called grid graphs or

lattice graphs. A grid graph G is an Euclidean n× n graph for some positive integer n where

the nodes are situated at each of the n2 grid points. Any two vertices are connected by an edge

if and only if their Euclidean distance is one unit and a node has at most 4 neighbors. For

example, see figure 2.4.

Let there be an arbitrary tree T that spans the grid vertices. Assume that the root r of

the tree T is one of the corners of the grid. We compare the cost of a path from a set of grid

vertices to the root r to the cost of the tree path of those vertices.

We show that there exists a vertical (or horizontal) line in the grid that contains pairs of

nodes whose distances in T sum to θ(n log n), whereas , the shortest path along the grid vertices

would be Ω(n).

Define a Ux-Path as a path between any two adjacent nodes in an n × n grid. Define a

reference node to a Ux-Path as one of its end nodes. All the distances in any Ux-Path will be

measured from its respective reference node.

A Ux-Path could extend at least x/2 − 1 distance from its reference node. A Ux-Path has

the following properties:

1. The total length of the path is at least x− 1.

2. The Ux-Path has a node that is x/2 away from its reference node. In other words, the

path will intersect a node in its x/2-radius from one of its end nodes. Informally, we call

it ‘width’.

Consider any two adjacent nodes u and v (with respect to G) that forms a Ux-Path. Let u

be its reference node. Let there be a node p ∈ Ux-Path such that dist(u, p) ≥ x/2 − 1. If the

33

x

2/x

Ux/2-Path

H-Path

V-Path

x/4

Figure 2.2: Ux/2-Paths originating from a x/2× x/2 subgrid centered in a x× x subgrid of G.

vertical distance of node p from u is greater than or equal to the horizontal distance of it from

u, then, we say that the Ux-Path is vertical. Otherwise, it is horizontal. We shall refer to such

paths as V-Paths and H-Paths respectively.

Lemma 2.8.1. In a x× x subgrid of G, there is at least one Ux-Path in T with its end-nodes

in the perimeter of the subgrid.

Proof. For contradiction, let us suppose that all the pairs of nodes in the subgrid have a Ux-

Path of length at most x − 1. This formation will lead to two observations. The center (a

square of unit length) of the subgrid will not be reached by any of the paths. This will result

in a cycle. This leads to a contradiction. Hence, there must be at least one Ux-Path that is

longer that x− 1.

Define an x-class to be a decomposition of G into x×x subgrids where two adjacent subgrids

share a common edge. The number of such subgrids would be n2/x2. There will be log n classes

of such subgrids based on the value of x, (= n, n/2, n/4, . . . , 1).

Let Ux/2-Core be a x/2 × x/2 subgrid centered within an x × x subgrid of G as given in

Figure 2.2. We observe that the Ux/2-Paths from adjacent node pairs along the perimeter of

34

the Ux/2-Core would extend either internally or externally to a maximum distance (width) of

x/4. The minimum distance they would extend will be x/8.

Each x × x subgrid will have either a H-Path or a V-Path in it, as shown in Fig 2.3. This

identifies the ‘type’ of that subgrid (namely H-Type or V-Type). Consider a certain x-class

decomposition ofG. There will be a mix of H-Type and V-Type subgrids totaling n2/x2 subgrids

that constitutes this decomposition. If the number of H-Type subgrids is larger (> n2/2x2)

than the number of V-Type subgrids, then, we say that the x-class decomposition is of type H.

Otherwise, it is of type V. Therefore, out of the log n classes of decomposition of G, some of

them will be “H-Type” and some will be “V-Type”. Without loss of generality, assume that

the majority is of H-Type.

Consider a H-Type x-class of G. Define x-width column as one of the columns in G where

G is divided into several columns of width x. Consider a vertical line ` ∈ G of length n.

This line will span n/x subgrids. Those n/x subgrids will possibly be a mixture of H-Type

and V-Type subgrids. Observe that ` will intersect zero or more (≤ n/x) H-Paths present in

those subgrids. We say that ` is a ‘good vertical line’ for the x-class (GVLx) if it intersects a

constant (n/2x) number of H-Paths at a position less than or equal to 3/4th of the ‘width’ of

those H-Paths measured from their respective end-nodes. The constraint associated with the

intersection point on the H-Path is to ensure that the length of the U-Path from the intersection

points still remains significantly long.

Lemma 2.8.2 gives the total number of GVLs in G. We choose the one that intersects the

largest number of H-Paths (c1 is the largest among all) and refer to that line as GV L∗x. For

each of the log n classes of subgrids, there will be a respective GV L∗x (or a GHL∗x if the class is

a V-Type).

Lemma 2.8.2. The total number of GVLs in an x-class of G is 3n/128.

Proof. Consider a H-Type x-class decomposition of G. The ‘width’ of any H-Path in a subgrid

35

GVL X-width column

Figure 2.3: An example of a GVL in a grid where each x× x subgrid has either an H-Path or
a V-Path.

is at least x/8. Hence, the number of vertical lines that can intersect such a H-Path is x/8.

But a GVL would intersect only within 3/4th of the width of any H-Path. On an average, in an

x-width column, there will be n
2x

H-paths. And, by pigeonhole principle, on an average, at least

half of the columns in G will have average number of H-Paths. Therefore, the total number of

GVLs in G for x-class will be n
2x
· 1

2
· x

8
· 3

4
= 3n

128
.

A GVL for a class n/2k will have 2k such pairs of vertices. Each pair of these vertices forms

a H-Path of length θ(n/2k). Now, we shift our focus to finding one GVL for all the log n classes.

To find such a line, we first find GVLs for all the individual classes n, n/2, n/4, . . . , 1. We form

an overlay of all such GVLs and find the one that overlaps all the classes. Such a GVL would

be the line that would have pairs of nodes that has U -paths of all the different lengths, and

each path would contribute a length of n.

Lemma 2.8.3. There is a GVL (denoted by GVL∗) that is common to a constant fraction of

the total number of horizontal classes.

Proof. The number of classes that are of type H is at least logn
2

. The number of GVLs in all the

logn
2

classes will be 3n
128

logn
2

= 3n logn
256

. Therefore, the number of GV L∗s that overlaps a constant

36

number of these classes would be
3n logn

256

n
= 3 logn

256
. This proves the existence of at least one

GV L∗.

Now, we are ready to present the central theorem of this section.

Theorem 2.8.4. There exists a set S of nodes in G such that (i) S constitutes θ(n) nodes (ii)

Optimal tree T ∗ for S has cost O(n) and (iii) The induced subtree T (S) has Ω(n log n) cost.

Proof. From Lemma 2.8.3, we observe that GVL∗ crosses H-Paths that belong to different (a

constant number of) x-classes. For an arbitrary class xi, it will have θ(n/xi) paths of length

θ(n/xi). An example of this scenario can be seen in Fig 2.4. Since there will be a constant

number of classes (≥ log n/2) that belong to H-Type, the total cost of the induced paths will

be xi(n/xi) + xj(n/xj) + . . . = θ(n log n). Hence, the least cost along the tree path would be

Ω(n log n).

Note that there will be overlaps in the H-Paths from different classes. An H-Path from an

xi-class can contain an H-Path from an xj-class where xi > xj. The overlaps can go further

such that an H-Path from an xi-class can contain one or more H-Paths from classes that are

smaller that xi. In effect, the number of overlaps will halve the number of H-paths of smaller

classes and hence the effective path length is half of its contribution.

From Lemma 2.8.4, we obtain the following corollary:

Corollary 2.8.5. In any n× n grid, any spanning tree T will have C.R.(T) = Ω(log n).

2.9 Simulation Results

We simulated our algorithm, denoted by Oblivious Spanning Tree (OST) and compared its

performance (fusion-cost) with GRID GIST [JNRS06] and other common trees such as MST

37

GVL * S

u

Figure 2.4: Paths in an n× n grid.

Figure 2.5: fusion-cost for varying set of source nodes in a 1600-node grid.

(Minimum Spanning Tree) and SPT (Shortest-Paths Tree). We used an n×n grid topology for

our simulation using NetworkX [HSS08]. n × n grids are a special case of doubling-dimension

graphs and they fall under a variation of the Steiner tree problem called “Rectilinear Steiner

Problem” (RSP) where the tree structure has only vertical and horizontal lines that interconnect

all points and is proved to be NP-Complete [GJ77]. Since calculating a minimum weight tree

structure in an n x n grid topology (a doubling-dimension graph) is essentially an RSP, the

problem we are addressing is NP-Hard.

We build a single spanning tree in a grid with n2 = 1600 nodes. We simulate it for random

38

sets of data sources, up to 1445, that are randomly placed. The random data sets (of known

size) are generated using Python’s random sampling method without replacement from the

given population. Note that GRID GIST is a special algorithm designed for grids and ours is

a generalized algorithm. Hence, GRID GIST performs slightly better than OST (in Fig 2.5).

2.10 Conclusions

We provide a spanning tree algorithm for a variant of the single-sink buy-at-bulk network design

problem in low constant doubling-dimension graphs. Contrary to many related work where the

source-destination pairs were already given, or when the source-set was given, we assumed

the obliviousness of the set of source nodes. Moreover, we considered an unknown fusion-cost

function at every edge of the tree. We presented nontrivial upper and lower bounds for the cost

of the set of paths in the spanning tree. We have demonstrated that a simple, deterministic,

polynomial-time algorithm based on appropriately defined distance-based independent sets can

provide single spanning tree for data fusion. We have shown that this algorithm guarantees

(log3D)-approximation.

39

Chapter 3

Planar Graphs

3.1 Overview

In the oblivious buy-at-bulk network design problem in a graph, the task is to compute a fixed

set of paths for every pair of source-destination in the graph, such that any set of demands can

be routed along these paths. The demands could be aggregated at intermediate edges where

the fusion-cost is specified by a canonical (non-negative concave) function f . We give a novel

algorithm for planar graphs which is oblivious with respect to the demands, and is also oblivious

with respect to the fusion function f . The algorithm is deterministic and computes the fixed

set of paths in polynomial time, and guarantees a O(min(log n, logD))-approximation ratio for

any set of demands and any canonical fusion function f , where n is the number of nodes and

D the diameter of the graph. The algorithm is asymptotically optimal, since it is known that

this problem cannot be approximated with better than Ω(log n) ratio. To our knowledge, this

is the first tight analysis for planar graphs, and improves the approximation ratio by a factor

of log n with respect to previously known results.

3.1.1 Problem Statement

Assume that we are given a weighted graph G = (V,E,w), with edge weights w : E −→ Z+.

We denote we to be the weight of edge e. Let di = (si, ti) be a unit of demand that in-

duces an unsplittable unit of flow from source node si ∈ V to destination node ti ∈ V .

Let A = {d1, d2, . . . , dr} be a set of demands that are routed through paths in G. It is

possible that some paths may overlap. The flow of these demands forms a set of paths

P (A) = {p(d1), p(d2), . . . , p(dr)}.

40

There is an arbitrary canonical function f at every edge where demand aggregates. This f

is same for all the edges in G. Let ϕe(A) = {p(di) : e ∈ p(di)} denote the set of paths that

use an edge e ∈ E. Then, we define the cost of an edge e to be Ce(A) = f(|ϕe(A)|) · we. The

total cost of the set of paths is defined to be C(A) =
∑

e∈E Ce(A). For this set A, there is an

optimal set of paths P ∗(A) with respective cost C∗(A). The approximation ratio for the paths

P (A) is defined as C(A)
C∗(A)

. The MSBB optimization problem on input A is to find a set of paths

P (A) that minimizes the approximation ratio. We note that MSBB is NP-Hard as the Steiner

tree problem is its special case (when f(x) = 1 and when there is only one destination node)

[SCRS00].

An oblivious algorithm Aobl for the MSBB problem, computes a fixed set of paths, denoted

P (G) for every pair of source destination nodes in V . Given any set of demands A, the path

p(di) for each di = (si, ti) ∈ A, is the fixed path in P (G) from si to ti. This gives a set of paths

P (A) to route the demands A. We define the approximation ratio of Aobl, as:

A.R.(Aobl) = max
A

C(A)

C∗(A)
.

We aim to find algorithms that minimizes the above approximation ratio for any canonical

function f which is unknown to the algorithm. The best known oblivious algorithm is by

Gupta et al. [GHR06] and provides approximation ratio O(log2 n) for general graphs. No

better result is known for planar graphs. This problem is NP-hard, since MSBB is NP-hard.

3.1.2 Contribution

We provide an oblivious algorithm FindPaths for MSBB problems in planar graphs. Our algo-

rithm is deterministic and computes in polynomial time a fixed set of paths that guarantees

O(min(log n, logD)-approximation ratio for any canonical function f (where f is unknown to

the algorithm). A lower bound of Ω(log n) for planar graphs is provided in the context of the

online Steiner tree problem by Imase and Waxman [IW91]. Thus, our bound is tight with

41

respect to planar graphs. It is also a log n factor improvement over the best previously known

result [GHR06].

3.2 Definitions

Consider a locality parameter γ > 0. A set of clusters Z is said to γ-satisfy a node v in G, if

there is a cluster X ∈ Z, such that the γ-neighborhood of v, Nγ(v), (nodes within distance γ

from v) is included in X, that is, Nγ(v) ⊆ X. A set of clusters Z is said to be a γ-cover for

G, if every node of G is γ-satisfied by Z in G. The stretch σ(Z) of a γ-cover Z is the smallest

number such that rad(Z) = σ(Z) · γ.

We define the following coloring problem in a set of clusters Z. We first define the notion

of the distance between two clusters Xi, Xj ∈ Z, Xi 6= Xj. We say that dist(Xi, Xj) ≤ k, if

there is a pair of nodes u ∈ Xi and v ∈ Xj such that u is k-satisfied in Xi, v is k-satisfied in

Xj, and dist(u, v) ≤ k. A valid distance-k coloring of Z with a palette of χ colors [1, χ], is an

assignment of an integer color(X) ∈ [1, χ] to every X ∈ Z, such that there is no pair of clusters

Xi, Xj ∈ Z, Xi 6= Xj, with dist(Xi, Xj) ≤ k which receive the same color. The objective is to

find the smallest χ that permits a valid distance-k coloring.

3.3 Technique Used

We build the set of paths based on sparse covers (see [Pel00] for an overview of sparse covers).

A γ-cover consists of clusters such that for each node there is some cluster that contains its

γ-neighborhood. We construct O(logD) levels of covers with exponentially increasing locality

parameter γ. For every cluster we elect a leader. For any pair of nodes u, v we identify an

appropriate common lowest-level cluster that contains both u and v, and the cluster has a

respective common leader `. Then the path from u to v is formed by connecting successive

path segments emanating from both u and v and using intermediate leaders of lower level

42

Table 3.1: Our results and comparison with previous results for data-fusion schemes. n is the
total number of nodes in the topology, k is the total number of source nodes and D is the
diameter of graph G.

Related
Work

Algorithm
Type

Graph
Type

Oblivious
Function
f

Oblivious
Sources

Approx
Factor

Lujun Jia
et al.
[JNRS06]

Deterministic
Random
Deployment

× X O(log n)

Lujun Jia et
al. [JLN+05]

Deterministic
Arbitrary
Metric

× X O(log4 n
log log(n))

Deterministic
Doubling
Metric

× X O(log(n))

Ashish Goel
et al. [GE03]

Randomized
General
Graph 4-
inequality

X × O(log k)

Ashish Goel
et al.
[GP09, GP10]

Randomized
General
Graph

X × O(1)

Anupam
Gupta et al.
[GHR06]

Randomized
General
Graph

X X O(log2 n)

Randomized Low Doubling X X O(log n)
This work Deterministic Planar X X O(min(log n, logD))

clusters until the common leader ` is reached.

In the analysis, we introduce the notion of coloring sparse covers, where two clusters that

are close receive different color. We show the existence of a sparse cover with constant coloring

(based on the sparse covers in [BLT07]). This enables us to obtain optimal approximation at

every level. When we combine all the levels, we get an O(logD) approximation.

In section 3.7, we provide an analysis for anO(log n)-approximation by splitting the demands

into ranges according to the distance between sources and destinations and mapping those

demand ranges to edge-weight ranges in G. The analysis provides four sequences of interleaving

ranges that has non-overlapping edge-weights. The summation of the costs for all the demands

in all these sequences are then showed to be in O(log n).

43

3.4 Sparse Cover

A γ-cover is sparse if it has small degree and stretch. In [BLT07, Section 5] the authors present

a polynomial time sparse cover construction algorithm Planar-Cover(G, γ) for any planar graph

G and locality parameter γ, which finds a γ-cover Z with constant degree, β ≤ 18, and constant

stretch, σ ≤ 24. Here, we show that this cover also admits a valid distance-γ coloring with a

constant number of colors χ ≤ 18.

For any node v ∈ G, we denote by depthv(G) the shortest distance between v and an

external node (in the external face) of G. We also define depth(G) = maxv∈V depthv(G). The

heart of sparse cover algorithm in [BLT07, Section 5] concerns the case where depth(G) ≤ γ

which is handled in Algorithm Depth-Cover(G, γ). The general case, depth(G) > γ, is handled

by dividing the graph into zones of depth O(γ), as we discuss later. So, assume for now that

depth(G) ≤ γ.

The Algorithm Depth-Cover(G, γ), relies on forming clusters along shortest paths connecting

external nodes (in the external face) of G. For every shortest path p, Algorithm Shortest-Path-

Cluster(G, p, 4γ) in [BLT07, Section 3] returns a set of clusters around the 4γ neighborhood of

p with radius at most 8γ and degree 3. Then, p and all its 2γ-neighborhood is removed from G

producing a smaller subgraphG′ (with possibly multiple connected components). The algorithm

proceeds recursively on each connected component H of G′ by selecting an appropriate new

shortest path p′ between external nodes of H. The algorithm terminates when all the nodes

have been removed. The initial shortest path that starts the algorithm consists of a single

external node in G. The resulting γ-cover Z consists of the union of all the clusters from all

the shortest paths. The shortest paths are chosen in such a way that a node participates in the

clustering process of at most 2 paths, and this bounds the degree of the γ-cover to be at most

β ≤ 6, and stretch s ≤ 8.

The analysis in [BLT07, Section 5.1.1] of Algorithm Depth-Cover relies on representing the

44

clustering process of G as a tree T as we outline here. Each tree node w ∈ T represents a pair

w = (G(w), p(w)) where G(w) is a planar subgraph of G that is to be clustered, and p(w) is a

shortest path between two external nodes of G(w). The root of the tree is r = (G, v), where

v is a trivial initial path with one external node v ∈ G. The children of a node w ∈ T are

all the nodes w′ = (G(w′), p(w′)), such that G(w′) is a connected component that results from

removing p(w) and its 2γ-neighborhood from G.

Next, we extend [BLT07, Lemma 3.1] to show that we can color the clusters obtained by a

shortest path clustering using a constant number of colors.

Lemma 3.4.1. For any graph G, shortest path p ∈ G, the set of clusters returned by Algorithm

Shortest-Path-Cluster(G, p, 4γ) admits a valid distance-γ coloring with 3 colors.

Proof. The algorithm divides the path p into consecutive disjoint subpaths p1, p2, . . . , p` each of

length 4γ (except for the last subpath p` which may have shorter length). The algorithm builds

a cluster Xi around each subpath pi which consists of the 4γ-neighborhood of pi. We can show

that dist(Xi, Xi+3) > γ. Suppose otherwise. Then, there are nodes u ∈ Xi, v ∈ Xi+3, which

are γ-satisfied in their respective clusters and dist(u, v) ≤ γ. Thus, u ∈ Xi+3. Then, there is a

path of length at most 8γ that connects the two paths pi and pi+3 which is formed through u.

However, this is impossible since the paths are at distance at least 8γ + 1. Therefore, we can

use a palette of at most 3 colors to color the clusters, so that each cluster Xi receives color (i

mod 3) + 1.

We can obtain a coloring of Z by coloring the respective levels of the tree T . Assume that

the root is at level 0.

Lemma 3.4.2. The union of clusters in any level i ≥ 0 of the tree T , admits a valid distance-γ

coloring with 3 colors.

Proof. Consider a level i ≥ 0 of T . From Lemma 3.4.1, the clusters produced in any node w of

45

level i from path p(w) can be colored with 3 colors. Consider now two nodes w1 and w2 in level

i of T . Let X be a cluster from p(w1). Any node which is γ-satisfied (with respect to G) in

X, cannot have in its γ-neighborhood any node in G(w2), since G(w1) and G(w2) are disjoint.

Therefore, any two nodes which are γ-satisfied in the respective clusters of w1 and w2 have to

be at distance more than γ from each other in G. This implies that we can use same palette of

3 colors for each node in the same level i of the tree.

Lemma 3.4.3. Algorithm Depth-Cover(G, γ) returns a set of clusters Z which admits a valid

distance-γ coloring with 6 colors.

Proof. From Lemma 3.4.2, the clusters of each level of the tree T can be colored with 3 colors.

From the proof in [BLT07, Lemma 5.4], any node v ∈ G is clustered in at most 2 consecutive

levels i, i+1 of T , and does not appear in any subsequent level. Any node u which is γ-satisfied

in a cluster of level i+ 2 cannot be with distance of γ or less from v, since v doesn’t appear in

the level i + 2 subgraph of G. Therefore, any node v which is γ-satisfied in a cluster of level i

must be at distance more than γ than any node u which is γ-satisfied in a cluster of level i+ 2.

Therefore the clusters formed at level i are at distance at least γ + 1 from clusters formed at

level i + 2. Consequently, we can use color palette [1, 3] for odd levels and color palette [4, 6]

for even levels, using in total 6 colors.

We are now ready to consider the case depth(G) > γ. Algorithm Planar-Cover(G, γ) decom-

poses the graph into a sequence of bands, such that each band Wi has depth γ. The bands

are organized into zones, such that zone Si consists of three consecutive bands Wi−1,Wi,Wi+1.

Thus, zone Si overlaps with bands Si−2, Si−1, Si+1 and Si+2. The algorithm invokes Depth-

Cover(Si, 3γ − 1) for each zone giving a γ-cover Z with degree β ≤ 3 · 6 = 18 and stretch

σ ≤ 3 · 8 = 24.

We can obtain the following coloring result. Using Lemma 3.4.3, for every zone Si we can

get a valid distance-(3γ−1) coloring with a palette of 6 colors. This implies that we can obtain

46

Algorithm 3: AuxiliaryPaths(G)

Input: Graph G = (V,E,w)
Output: Set of auxiliary paths for all nodes in G

// Zi is a γi-cover of G, 0 ≤ i ≤ κ (γi, κ specified in Section 3.6)

// Assume each cluster has a designated leader node

1 Q ← ∅; // set of auxiliary paths for all nodes in G
2 foreach v ∈ V do
3 q(v)← ∅; // auxiliary path for node v from level 0 to κ
4 x← v;
5 for i = 0 to κ− 1 do
6 Let X ∈ Zi+1 be a cluster that γi+1-satisfies v;
7 `i+1(v)← leader of X;
8 qi(v)← shortest path from x to `i+1(v);
9 q(v)← concatenate q(v) and qi(v);

10 x← `i+1(v);

11 end
12 Q ← Q∪ q(v);

13 end
14 return Q;

a valid distance-γ coloring for the zone with at most 6 colors. Zones Si and Si+3 do not overlap

and any two nodes satisfied in them (one from each zone) with respect to G must be more

than γ distance apart. Therefore, we can color all the zones with three different palettes each

consisting of 6 colors, so that zone Si, uses the ((i mod 3) + 1)th palette. The coloring can be

found in polynomial time. Therefore, we obtain:

Theorem 3.4.4. Algorithm Planar-Cover(G, γ) produces a set of clusters Z which has degree

β = 18, stretch σ ≤ 24, and admits a valid distance-γ coloring with χ = 18 colors.

3.5 Algorithm

We describe how to find paths between each pair of nodes in graph G = (V,E,w) to route

demands. To find such paths, we use Algorithm FindPaths (Algorithm 4) which relies on

Algorithm AuxiliaryPaths (Algorithm 3).

Both algorithms use κ+ 1 covers Z0, . . . , Zκ, where in Z0 every node in V is a cluster, and

47

Algorithm 4: FindPaths(G)

Input: Graph G = (V,E,w).
Output: Set of paths between all pair of nodes in G

// Let Zi, `i(x), and q(x), be as in Algorithm AuxiliaryPaths; `0(x)← x
// Let qi(x) be the auxiliary path segment from x to `i(x); q0(x)← x

1 P ← ∅; // set of paths for all pairs of nodes in G
2 foreach pair u, v ∈ V do
3 Let γi be the smallest locality parameter such that γi ≥ 2 · dist(u, v);
4 Let X ∈ Zi be a cluster that γi-satisfies u (and hence γi/2-satisfies v);
5 Let `′ be the leader of X (common leader of u, v);
6 q′ ← concatenate shortest paths from `i−1(u) to `′ to `i−1(v);
7 p(u, v)← concatenate qi−1(u), q′, and qi−1(v);
8 P ← P ∪ p(u, v);

9 end
10 return P ;

Zi is a γi-cover of G, for i ≥ 1, where the parameters γi and κ are defined in Section 3.6. We

refer to the cover Zi as the level i cover of G. We assume that each cluster in the covers has a

designated leader node. There is a unique cluster, containing all nodes in G, and leader node

`κ at level κ.

Algorithm AuxiliaryPaths computes an auxiliary path q(v) from every node v ∈ V to `κ. The

auxiliary paths are built in a bottom-up fashion. An auxiliary path from any node v ∈ V at

level 0 is built recursively. In the basis of the recursion, we identify a cluster X1 ∈ Z1, which

γ1-satisfies node v. Let `1(v) denote the leader X1. We now compute a shortest path, denoted

q0(v), from v to `1(v). This forms the first path segment of q(v). Suppose we have computed

q(v) up to level i, i < κ. We now want to extend this path to the next higher level i + 1. To

compute the path segment from level i to level i+ 1, we repeat the process of finding a cluster

Xi+1 ∈ Zi+1 that γi+1-satisfies node v. Let `i+1(v) denote the leader X1. We compute the

shortest path, denoted qi(v) from `i(v) to `i+1(v). We then append this new path segment qi(v)

to q(v) to form the current extended path q(v). The path building process terminates when

the last leader reaches level κ.

We are now ready to describe how Algorithm FindPaths computes the shortest paths between

48

all pair of nodes in G. For a pair of nodes u, v ∈ V , let y be the distance between them. Let γi

be the smallest locality parameter such that γi ≥ 2y. Let X ∈ Zi be the cluster that γi satisfies

u, and let `′ be the respective leader of X. Note that by the way that we have chosen γi, cluster

X also γi/2-satisfies v. Let qi(u) denote the segment of the auxiliary path q(u) from u to `i(u).

We concatenate qi−1(u), with a shortest path from `i−1(u) to `′, with a shortest path from `′

to `i−1(v), and qi−1(v). This gives the path p(u, v).

3.6 Analysis for O(logD)-approximation

Let G = (V,E,w) be a planar graph with n nodes. In this section we use the following

parameters:

κ = 1 + dlog4σDe //highest cluster level in G

β = 18 //cover degree bound

σ = 24 //cover stretch bound

γi = (4σ)i−1 //locality parameter of level i ≥ 1 cover

χ = 18 //coloring of each level i

Consider κ+ 1 levels of covers Z0, . . . , Zκ+1, where in Z0 each node in V is a cluster, and each

Zi, i ≥ 1, is a γi-cover of G which is obtained from Theorem 3.4.4. Thus, each Zi, i ≥ 1, has

degree at most β, stretch at most σ, and can be given a valid distance-γi coloring with χ colors.

Let A denote an arbitrary set of demands. For any demand d = (s, t) ∈ A let p(d) = p(s, t)

be the path given by Algorithm FindPaths. Suppose that the common leader of s and t is `.

The path p(d) consists of two path segments: the source path segment p(s), from s to `, and

the destination path segment p(t) from ` to t. We denote by pi(s) the subpath between level i

and level i+ 1 (we call this the level i subpath).

Let C∗(A) denote the cost of optimal paths in A. Let C(A) denote the cost of the paths

given by our algorithm. We will bound the competitive ratio C(A)/C∗(A). For simplicity, in

49

the approximation analysis, we consider only the cost of the source path segments p(si). When

we consider the destination segments the approximation ratio increases by a factor of 2.

The cost C(A) can be bounded as a summation of costs from the different levels as follows.

For any edge e let ϕe,i(A) = {pi(s) : ((s, t) ∈ A)∧(e ∈ pi(v))} be the set of layer-i subpaths that

use edge e. Denote by Ce,i(A) = f(|ϕe,i(A)|) · we the cost on the edge e incurred by the level-i

subpaths. Since f is subadditive, we get Ce(A) ≤
∑κ−1

i=0 Ce,i(A). Let Ci(A) =
∑

e∈E Ce,i(A)

denote the cost incurred by the layer-i subpaths. Since C(A) =
∑

e∈E Ce(A), we have that:

C(A) ≤
κ−1∑
i=0

Ci(A). (3.1)

For any cluster X let X(A) denote the set of demands with source in X whose paths leave

from the leader of X toward the leader of a higher level cluster.

Here, we provide an analysis of our algorithm that provides an O(logD)-approximation for

the cost of the set of paths.

Lemma 3.6.1. For any Zi, 2 ≤ i ≤ κ− 1, C∗(A) ≥ R(i)/χ, where R(i) =
∑

X∈Zi f(|X(A)|) ·

γi/2.

Proof. Let Zi(k) to be the set of clusters at level i which receive color k ∈ [1, χ]. Consider a

cluster X ∈ Zi(k). Consider a demand (s, t) ∈ X(A). Since X ∈ Zi(k) the common leader

of s and t is at a level i + 1 or higher. From the algorithm, dist(s, t) ≥ γi+1/2. Consider the

subpaths from X(A) of length up to γi/2. In the best case, these subpaths from X(A) may be

combined to produce a path with smallest possible total cost f(|X(A)|) · γi/2. Any two nodes

u ∈ X(A) and v ∈ Y (A), where X, Y ∈ Zi(k) and X 6= Y , have dist(u, v) > γi, since each node

is γi-satisfied in its respective cluster and X and Y receive the same color in the distance-γi

coloring of Z. Therefore, the subpaths of lengths up to γi/2 from the demands X(A) and Y (A)

cannot combine. Consequently, C∗(A) ≥ R(i, k) where R(i, k) =
∑

X∈Zi(k) f(|X(A)|) ·γi/2. Let

50

Rmax = maxk∈[1,χ] R(i, k). We have that C∗(A) ≥ Rmax. Since R(i) =
∑χ

k=1R(i, k) ≤ Rmax · χ.

We obtain C∗(A) ≥ R(i)/χ, as needed.

We also get the following trivial lower bound for the special case where 0 ≤ i ≤ 1, which

follows directly from the observation that each demand needs to form a path with length at

least 1.

Lemma 3.6.2. For any Zi, 0 ≤ i ≤ 1, C∗(A) ≥
∑

X∈Zi f(|X(A)|).

We obtain the following upper bound.

Lemma 3.6.3. For any Zi, 0 ≤ i ≤ κ − 1, Ci(A) ≤ Q(i) where Q(i) =
∑

X∈Zi f(|X(A)|) ·

βσγi+1.

Proof. For any cluster X ∈ Zi, we can partition the demands X(A) = Y1 ∪ Y2 ∪ . . .∪ Yk, where

Yi 6= Yj, i 6= j, according to the leaders at level i + 1 that they use, so that all demands in Yi

use the same leader in Zi+1, and Yi and Yj use a different leader of Zi+1. Next, we provide a

bound on k.

Consider any two demands d1 = (s1, t1) ∈ X(A) and d2 = (s2, t2) ∈ X(A). Let `i be the leader

of X. Since s1 and s2 are γi-satisfied by the cluster X of `i, they are both members of that

cluster. Therefore, dist(s1, `i) ≤ σγi, and dist(s2, `i) ≤ σγi. Thus, dist(s1, s2) ≤ 2σγi = γi+1/2.

Suppose that demand d1 chooses leader `i+1 at level i+ 1 with respective cluster Xi+1. Since

s1 is at least γi+1/2-satisfied in Xi+1, s2 is a member of Xi+1. Since any node is a member of

at most β clusters at level i+ 1, it has to be that the number of different level i+ 1 leaders at

level i+ 1 that the demands in X(A) select is bounded by β. Consequently, k ≤ β.

Since f is subadditive and for any demand (s, t), |pi(s)| ≤ σγi+1, Ci(Yj) ≤ f(|Yj|) · σγi+1.

Therefore, Ci(X(A)) ≤
∑k

j=1 Ci(Yj) ≤ f(|X(A)|) · βσγi+1. Which gives:

Ci(A) ≤
∑

X∈Zi f(|X(A)|) · βσγi+1, as needed.

51

Lemma 3.6.4. For any 0 ≤ i ≤ κ− 1, Ci(A) ≤ C∗(A) · 8βσ2χ.

Proof. From Lemma 3.6.3, for any 0 ≤ i ≤ κ − 1, Ci(A) ≤ Q(i). From Lemma 3.6.1, for any

2 ≤ i ≤ κ−1, C∗(A) ≥ R(i)/χ. Note that Q(i) = R(i) ·2βσχγi+1/γi = R(i) ·8βσ2χ. Therefore,

Ci(A) ≤ C∗(A) · 8βσ2χ. For 0 ≤ i ≤ 1, we use the lower bound of Lemma 3.6.2, and we obtain

Ci(A) ≤ C∗(A) · βσγ2 = C∗(A) · 4βσ2.

We now give the central result of this analysis:

Theorem 3.6.5. The oblivious approximation ratio of the algorithm is O(logD).

Proof. Since the demand set A is arbitrary, from Lemma 3.6.4 and Equation 3.1 we obtain

oblivious approximation ratio bounded by 8κβσ2χ. When we take into account the source path

segments together with the destination path segments, the approximation ratio bound increases

by a factor of 2, and it becomes 16κβσ2χ. Since, β, σ, χ, are constants and κ = O(logD), we

obtain approximation ratio O(logD).

With a more fine-tuned analysis where we separate the demands into ranges according to

the distance between sources and destinations, we can obtain approximation ratio O(log n) as

shown in the following analysis.

3.7 Analysis for O(log n)-approximation

The following analysis provides a O(log n)-approximation for the cost of paths due to our

algorithm. In the lemma below, P (G) is the set of paths returned by our algorithm.

Lemma 3.7.1. For any demand dk = (sk, tk) ∈ A, the length (number of edges) of a path

p(dk) ∈ P (G) is at most 74 · dist(sk, tk).

52

Proof. Algorithm AuxiliaryPaths gives a set of paths between any pair of nodes in G. The

auxiliary path p(dk) is built in a step-wise bottom-up fashion where there is a path q(sk) that

connects sk to `′ and `′ to tk through a series of concatenated segments, where `′ is the leader

of the common cluster X ∈ Zi that γi-satisfies sk and γi
2

-satisfies tk, where level i < κ.

For every path segment qj(sk) that connects a leader `j to `j+1, 0 < j < i, there is a stretch of

σ. Hence, the distance from sk to `′ is σ[γ1 + γ2 + . . .+ γi] and similarly, the distance from tk

to `′ is σ[γ1 + γ2 + . . .+ γi
2

]. Hence, the total length, denoted by |p(dk)|, from sk to tk will be:

|p(dk)| ≤ 2σ[γ1 + γ2 + . . .+ γi−1] +
3

2
· σ · γi (3.2)

= 2σ
[
1 + 4σ + (4σ)2 + . . .+ (4σ)i−2

]
+

3

2
· σ · γi [∵ γi = (4σ)i−1]

= 2σ

[
(4σ)i−1 − 1

4σ − 1

]
+

3

2
· σ · (4σ)i−1 (3.3)

Let d̂k = dist(sk, tk). Since the common cluster is at level i and γi ≥ 2 · d̂k, we have

(4σ)i−1 ≥ 2 · d̂k. Solving for i− 1, we get, i− 1 ≥ dlog(2d̂k − 4σ)e = dlog(2d̂k − 96)e.

Substituting the value of i− 1 in Eqn (3.3), we get:

|p(dk)| ≤ 2σ

[
(4σ)log(2d̂k−96) − 1

4σ − 1

]
+

3

2
· 24 · (4σ)log(2d̂k−96)

= 2 · 24

[
(96)log(2d̂k−96) − 1

96− 1

]
+

3

2
· 24 · (96)log(2d̂k−96)

≤ 1

2
(96)log(2d̂k−96) − 1

2
+ 36 · (96)log(2d̂k−96)

≤ 37 · (96)log(2d̂k−96)

= 37 · (2log 96)
log 2d̂k
log 96 = 37 · (2)log 2d̂k

= 37 · 2d̂k

Hence the result follows that |p(dk)| ≤ 74 · dist(sk, tk).

53

The following corollary follows from Lemma 3.7.1.

Corollary 3.7.2. The weight of any edge in p(dk) ∈ P (G) does not exceed 74 · d̂k.

Consider a demand set Ax, where ∀ dk(sk, tk) ∈ Ax, 2x ≤ dist(sk, tk) ≤ (2x+logn+1 − 1),

where x ∈ Z+. Our algorithm on Ax will induce a set of paths P (Ax) in G that uses edges of

weights in three categories: R1(Ax), R2(Ax) and R3(Ax), defined as follows:

R1(Ax) : e ∈ E such that 1 ≤ we ≤ 2x/n2.

R2(Ax) : e ∈ E such that (2x/n2 + 1) ≤ we ≤ (74 · (2x+logn+1 − 1).

R3(Ax) : e ∈ E such that (74 · (2x+logn+1) ≤ we ≤ D.

From Corollary 3.7.2, R3(Ax) = ∅. Let C(Ax) be the total cost of our algorithm. We can

express C(Ax) = C1(Ax) + C2(Ax) + C3(Ax), where Ci(Ax) is the cost incurred by using edges

in Ri(Ax), 1 ≤ i ≤ 3. From Corollary 3.7.2, C3(Ax) = 0, thus, C(Ax) = C1(Ax) + C2(Ax).

Lemma 3.7.3. C1(Ax) ≤ C∗(Ax)
2

.

Proof. Since for any demand dk ∈ Ax, 2x ≤ dist(sk, tk), the optimal cost will be C∗(Ax) ≥

f(|Ax|) ·2x, when all the demands in Ax merge and use the edge of the lowest cost in the range.

In the worst case, let all the demands use all the edges of maximum weight in R1(Ax),

2x/n2 . Since the number of edges in G is at most n2/2, the resulting cost is given by C1(Ax) ≤

f(|Ax|) · 2
x

n2 · n
2

2
≤ f(|Ax|)·2x

2
. Since C∗(Ax) ≥ f(|Ax|) ·2x, we get the relation C1(Ax) ≤ C∗(Ax)

2
.

Lemma 3.7.4. C2(Ax) = O(C∗(Ax) log n).

Proof. When demands in Ax use edges in R2(Ax), it implies that the length of an edge in

any of those demand paths ranges between 2x/n2 + 1 and 74 · (2x+logn+1 − 1). Hence, we

54

consider those levels of clusters, used by our algorithm, whose diameter is in this range. All

the lower level clusters are ignored. Let level i denote the lowest level cluster whose diameter

is at least 2x/n2 + 1 and let level j denote the highest level cluster whose diameter is at most

74 · (2x+logn+1 − 1).

For level i, we have σγi ≥ 2x

n2 + 1. Solving for i − 1, we get, i − 1 ≥ log(2x+n2

24n2
)

log 96
. Likewise,

for level j, we have j − 1 ≤ log(2x·n
3

)

log 96
. The number of levels j − i that have the edge weights in

R2(Ax) is
log(8n32x

2x+n2
)

log 96
= O(log n).

Since there are O(log n) levels from i to j and since Lemma 3.6.4 shows that the cost of our

algorithm at every level is bounded by C∗(Ax) · 8βσ2χ, we have C2(Ax) ≤ O(C∗(Ax) log n).

Lemma 3.7.5. C1(Ax) ≤ C2(Ax).

Proof. We know that C(Ax) = C1(Ax) + C2(Ax). We also know that C(Ax) ≥ C∗(Ax). From

Lemma 3.7.3, C1(Ax) ≤ C∗(Ax)
2

. Therefore, to satisfy C(Ax) ≥ C∗(Ax), C2(Ax) must be at least

C∗(Ax)
2

. Hence, it follows that C1(Ax) ≤ C2(Ax).

Consider an arbitrary set of demands A in G with diameter D, where the distances of

the demand pairs will range from 1 to D. We group the demand sets consecutively as A =

{Ax1 , Ax2 , Ax3 , . . . , Axm}, where xi = i · log n, 0 ≤ i ≤ logD. This set of demands forms a

sequence. We will have four such sequences such that A = {A1 ∪ A2 ∪ A3 ∪ A4}, where:

A1 = {Ax1 , Ax5 , Ax9 , . . . }.

A2 = {Ax2 , Ax6 , Ax10 , . . . }.

A3 = {Ax3 , Ax7 , Ax11 , . . . }.

A4 = {Ax4 , Ax8 , Ax12 , . . . }.

55

The edge-weight ranges that map from each of the above demand sequences are interleaved.

Note that for any Axi , Axj ∈ Ak, R(Axi) is disjoint from R(Axj).

Theorem 3.7.6. The oblivious approximation ratio of the algorithm is O(logD).

Proof. Consider the demand sequence A1 ∈ A. The following holds:

C(A1) = C1(A1) + C2(A1) (3.4)

which is the sum of the cost incurred from the edge-weights in R1(A1) and R2(A1).

For costs incurred from R2(A1), the induced edge-weights can be summed as they are

disjoint:

C2(A1) = C2(Ax1) + C2(Ax5) + C2(Ax9) + . . .

And for costs incurred from R1(A1), the edges could merge and hence

C1(A1) ≤ C1(Ax1) + C1(Ax5) + C2(Ax9) + . . .

≤ C2(Ax1) + C2(Ax5) + C2(Ax9) + . . . (by Lemma 3.7.5) (3.5)

Therefore, from Eqns (3.4) and (3.5), we get:

C(A1) ≤ 2 · [C2(Ax1) + C2(Ax5) + C2(Ax9) + . . .] (3.6)

Since the edge-weights in R2(Ax) are disjoint, the following expression holds:

C∗(A1) ≥ C∗2(A1) ≥ C∗2(Ax1) + C∗2(Ax5) + C∗2(Ax9) + . . . (3.7)

Simplifying Eqn (3.6), we get:

56

C(A1) ≤ 2 · [C2(Ax1) + C2(Ax5) + C2(Ax9) + . . .]

≤ 2 · C · [C∗2(Ax1) + C∗2(Ax5) + C∗2(Ax9) + . . .] · log n (by Lemma 3.7.4)

≤ 2 · C · C∗2(A1) · log n (by Eqn (3.7))

≤ 2 · C · C∗(A1) · log n (∵ C∗(A1) ≥ C∗2(A1)) (3.8)

where C is a constant in the above inequalities. The analysis for A2, A3 and A4 is similar

to that of A1. Considering all the four sequences, the total cost for demand set A can be

summed-up as follows:

C(A) = C(A1) + C(A2) + C(A3) + C(A4)

≤ 2 · C · [C∗(A1) + C∗(A2) + C∗(A3) + C∗(A4] · log n (By Eqn (3.8))

≤ 2 · C · 4 · C∗(A) · log n

≤ 8C · C∗(A) · log n

Hence, it follows that C(A) = O(C∗(A) log n).

We now give the central result of the paper. From Theorem 3.6.5 and Theorem 3.7.6, the

following corollary is obtained:

Corollary 3.7.7. The oblivious approximation ratio of the algorithm is O(min(logD, log n)).

3.8 Conclusions

We provide a set of paths for the multi-sink buy-at-bulk network design problem in planar

graphs. Contrary to many related work where the source-destination pairs were already given,

or when the source-set was given, we assumed the obliviousness of the set of source-destination

pairs. Moreover, we considered an unknown fusion cost function at every edge of the graph.

57

We presented nontrivial upper and lower bounds for the cost of the set of paths. We have

demonstrated that a simple, deterministic, polynomial-time algorithm based on sparse covers

can provide a set of paths between all pairs of nodes in G that can accommodate any set of

demands. We have shown that this algorithm guarantees O(min(log n, logD))-approximation.

58

Chapter 4

Minor-Free Graphs

4.1 Overview

Minor-free graphs are those graphs that do not have K5 or K3,3 in them. A more detailed

definition is given in 4.2.

In the oblivious buy-at-bulk network design problem for minor-free graphs, the task is to

compute a fixed set of paths for every source node in the graph to the sink, such that any

set of demands can be routed along their respective paths to the sink. The demands could be

aggregated at intermediate edges where the fusion-cost is specified by a canonical (non-negative

concave) function f . We give a novel algorithm for minor-free graphs which is oblivious with

respect to the demands, and is also oblivious with respect to the fusion function f .

4.1.1 Problem Statement

Assume that we are given a weighted graph G = {V,E,w}, with edge weights w : E −→ Z+.

We denote we to be the weight of edge e. Let A = {s1, s2, . . . , sr} be a set of demand (source)

nodes in G and A ⊆ V . Let di = (si, s) be a unit of demand that induces an unplittable unit

of flow along a path p(di) from source node si to the sink node s ∈ V . It is possible that some

paths may overlap. The flow of these demands forms a tree T ′A ⊆ T where T is a spanning tree

on G.

There is an arbitrary canonical function f at every edge where demand aggregates. This f

is same for all the edges in G. Let ϕe(A) = {p(di) : e ∈ p(di)} denote the set of paths that use

an edge e ∈ E. Then, we define the cost of an edge e to be Ce(A) = f(|ϕe(A)|) · we. The total

cost of the set of paths is defined to be C(A) =
∑

e∈E Ce(A).

59

For this set of demands A, the cost of the tree T ′A is C(T ′A) =
∑

e∈E Ce(A). For the same

demand set A, there is an optimal set of paths that induces a Steiner tree TA with respective

cost C∗(TA). The approximation ratio for the cost of these trees is defined as
C(T ′A)

C∗(TA)
.

The SSBB optimization problem on input A is to find a tree T ′(A) that minimizes the

approximation ratio. We note that SSBB is NP-Hard as the Steiner tree problem is its special

case (when f(x) = 1 and when there is only one destination node) [SCRS00].

An oblivious algorithm Aobl for the SSBB problem, computes a fixed spanning tree, denoted

T for all the sources in G to the sink s. Given any set of demands A, the path p(di) for each

di = (si, s) ∈ A, is a fixed path in T from si to s. This gives a set of paths T ′A to route the

demands in A. We define the approximation ratio of Aobl, as:

A.R.(Aobl) = max
A

C(T ′A)

C∗(TA)
.

We aim to find algorithms that minimizes the above approximation ratio for any canonical

function f which is unknown to the algorithm.

4.1.2 Contribution

We provide an oblivious algorithm for SSBB problems in minor-free graphs. Our algorithm

is deterministic and computes in polynomial time a spanning tree that guarantees O(2
√

logD ·

log3
√

logD+4 n)-approximation over the optimal cost for minor-free graphs G, where D is the

diameter of the graph, n the total number of nodes, σ and χ are the stretch and chromatic

number of G.

60

4.2 Definitions

4.2.1 H-Minor Free Graphs

The contraction of an edge e = (u, v) in a graph G is the replacement of nodes u, v with a new

vertex whose incident edges are the edges other than e that were incident to u or v. A graph

H is a minor of G if H is a subgraph of a graph obtained by a series of edge contractions of G.

A graph is H-minor-free if H is not a minor of G.

For example, it is well known that planar graphs are exactly all the graphs whose set of

minors exclude K3,3 and K5. In other words, every minor-free family of graphs is contained

in a Kr,r-free family. For instance, planar graphs are K3,3-free. Furthermore, the classical

Kuratowski-Wagner Theorem [Kur30, Wag37] states that a graph is planar if and only if it has

no K5 or K3,3 minors. (For three different proofs of the theorem, see [Tho81]).

4.2.2 Partition

For a graph G = (V,E), define a cluster C(G) as a subset of vertices C ⊆ V . When the context

is clear, we will use C to refer C(G). Define a connected cluster C if there exists a path between

all pairs of vertices of C.

A strong diameter cluster is one where the shortest path between any pair of nodes in C

constitutes nodes that belong to C and the dist(u, v) ≤ d, where u, v ∈ C and d is the diameter

of C. A weak diameter cluster is one where the shortest path between any pair of nodes in C

contains nodes that do not belong to C and dist(u, v) > d.

A partition of a graph G produces clusters that are disjoint. A strong partition is one where

all the clusters of that partition are strong diameter clusters. Similarly, a weak partition is one

where all the clusters of the partition are weak diameter clusters.

61

Define a γ-partition with respect to a locality parameter γ as a partition of G that produces

clusters whose diameter is γ. Define an (γ, k)-partition to be a partition of G whose clusters

have diameter γ and that which can be colored in at least k colors.

4.2.3 Coloring

Define N(C, r) as the set of clusters C = {C1, C2, . . . , C`} that are at most r-distance apart

from any node u ∈ C. We shall call them r-neighborhood clusters of C. In other words,

N(C, r) = {C : dist(u, v) ≤ r, where u ∈ C, v ∈ Ci ∈ C}, 1 ≤ i ≤ `, Ci 6= C.

The clusters formed by an r-partition can be colored with different colors. Those clusters

that are less than r-distance apart (N(C, r)) will have colors different from the color of C. A

minimal coloring of clusters w.r.t r is the process of coloring a set of clusters with minimal

number of colors. This minimal number of colors needed for proper coloring of clusters is

denoted by the chromatic number notation χ.

Lemma 4.2.1. For any path p where len(p) = y, the number of clusters that p traverses through

is at most y/r · x, where x = N(C, r) and y > r.

Proof. There can be at most x differently colored clusters in every r-segment of any path p.

Since there are y/r such segments, the total number of clusters is at most x · y/r.

4.2.4 Laminar Family

A family L of sets is laminar if for every A,B ∈ L, either A ∩ B = ∅, or A ⊆ B or B ⊆ A. A

laminar family can be represented by a tree structure with the leaves as the nodes of the graph.

If Gi = (Vi, Ei), Gj = (Vj, Ej) and Gk = (Vk, Ek) are any three clusters of G, and if Vj ⊂ Vi,

and, Vk ∩ Vi = ∅, then, component Gj resides completely within Gi and Gk is disjoint from Gi.

62

4.2.5 Hierarchical Partitioning

Hierarchical partitioning of G = (V,E) is the process of recursively dividing V into disjoint

clusters V = {C1, C2, . . . , Cn} such that V =
⋃
Ci, 1 ≤ i ≤ n and each Ci ∈ V is a set of

smaller clusters. Informally, by ‘smaller’ clusters, we mean clusters of smaller diameter w.r.t

the next higher level cluster.

A weak hierarchical partition is a type of hierarchical partitioning of G where the resulting

clusters formed during the partitioning are all weak diameter clusters. Building a tree with this

type of partition will result in an overlay tree.

A strong hierarchical partition is a type of hierarchical partitioning of G where the resulting

clusters formed during the partitioning are all strong diameter clusters. A strong hierarchical

partition of G results in a laminar family of sets. Constructing a tree with this type of partition

will result in a spanning tree.

The hierarchical partitioning of G = (V,E) induces a laminar family L. If T is the rooted

construction tree whose nodes are sets in L, and Ci ∈ L completely contains Cj ∈ L iff Cj

is a cluster formed by the partition of cluster Ci. Observe that the tree T obtained by our

hierarchical partition has the property that every C ′ ⊆ L corresponds to a subtree T ′ of T .

Given a diameter γ, the partitioning of G is a (σ, χ, r)-partition when the individual parti-

tions of G has a stretch of σ, accepts a coloring of χ where χ is an assignment of colors to all

the partitions and where each partition gets a unique color and the minimum distance between

any two partitions is r. Similarly, a (σ, r)-partition when the individual partitions of G has a

stretch of σ and the minimum distance between any two partitions is r.

Define adjacent clusters Ca and Cb as those where there is at least one edge connecting a

node u ∈ Ca to a node v ∈ Cb. Define adjacent leaders `a and `b if their respective clusters

(Ca, Cb) are connected by at least one common edge.

63

4.3 Technique Used

We decompose the given minor-free graph G using path-separators and clustering based on a

locality parameter γ. The recursive decomposition of G results in a set of non-laminar clusters

for all (logD) levels of the hierarchical decomposition with exponentially increasing γ. For

every cluster, a leader is chosen. We ensure that the clusters formed do not interfere with

previously formed clusters. If so, the newer cluster will be merged with the interfering clusters

to form an augmented cluster. This gives a set of non-laminar clusters C. The algorithms and

detailed description are explained in section 4.4.

We then construct a set of laminar clusters CL from C for each level in the hierarchy.

The construction of laminar clusters is done using the same algorithm used for our original

decomposition of G. The adjacent clusters are connected with their respective leaders to form

a graph H. The clusters at any particular level i are contracted and represented by their

respective leaders. Edges are formed between the adjacent leaders to form a graph H ′ and

where the edges between the leaders are made to be of unit weight. Based on the properties of

H ′, we decompose H with specific locality parameter. This decomposition of H will result in

laminar clusters for that particular level. Note that the resulting laminar clusters will have an

augmented stretch. A more detailed description is given in section 4.5.

Once laminar clusters at all O(logD) levels are constructed, we construct a spanning tree

T by the following method. We connect the adjacent clusters by an edge which is the shortest

path between the leaders. This forms a graph H. We compute H ′, a tree of leaders by running

a Breadth-First-Search on H that would result in a spanning tree T . This tree T naturally

defines a sequence of paths from all the leaf nodes to the root. A thorough treatment of this

process is given in subsection 4.6.1.

The computation of paths is done on the spanning tree T . For each leaf node, we choose

the shortest path between successive leaders until the root is reached. Since, the paths in T

64

could have cycles, the choice of the shortest path is carefully done to avoid cycles by choosing

a next higher-level leader that is in the direction of the root. A more detailed explanation is

given in subsection 4.6.1.

4.4 Strong Partitioning in Minor-Free Graphs

In this section, we describe a technique to partition a given minor-free graph G using path-

separators and clustering. We focus on decomposing a given component of a particular level.

We begin by introducing some terms and notations. Given a distance parameter γ and

τ , any component H at a particular level will be decomposed in several stages as given in

Decompose-Component (8) and Recursive-Decomposition (9). Each stage of decomposition will

result in clusters of diameter γ − 2jτ , where j denotes the stage and 0 ≤ j ≤ log n − 1.

The clustering algorithm is detailed in 6 and 7. Repeated decomposition of components at a

particular level i will result in a set of clusters Ci with their respective leaders L. We run this

decomposition process for all log n levels, which results in a set of clusters C as a complete

partition of G. This set of clusters C is later used to construct a spanning tree T .

We start with an informal description of the decomposition algorithm:Decompose-Component

which when given a component H of stage j and a distance parameter γ, decomposes H into

a set of several strongly connected components H ′ that belong to the next stage j + 1. The

partitioning is done by removing path-separator S = {P1, P2, . . . , P`} from H. For all Pi, each

path-separator q ∈ Pi is used to partition H using Decompose-Component and cluster using

Partition-Algorithm with successively decreasing diameter γ.

Now, we describe the Partition-Algorithm. Given a set of clusterable paths Q and a locality

parameter γ, the algorithm results in a set of strongly connected clusters C. Each path σ ∈ Q is

divided into subpaths σj, σj+1, . . . , σj+k where len(σn) = γ, 1 ≤ n ≤ (j+k−1) and len(σj+k) ≤

γ. A set of nodes γ-distance around σ, is identified in G; Z = zone(γ, σ).

65

For each subpath σi ∈ σ, the first node is chosen as a leader `i. A set of unclustered nodes

Nuc ∈ Z is identified to form clusters from. For the first leader `1, we choose those nodes that

are at most γ-distance from `1 to form cluster C1. When a node v chooses a leader, all the

nodes in the path to the leader are also implicitly chosen to be in the same cluster. Also, every

time a cluster is formed, Nuc is adjusted accordingly; Nuc ← Nuc \
⋃

1≤k≤iCk.

Assuming that leaders up to `i have been clustered, we try to form a cluster for `i+1. A

set of nodes S from the adjusted Nuc are chosen such that ∀v ∈ S, dist(v, `i+1) ≤ γ to form a

cluster Ci+1. Note that a node v ∈ Nuc will prefer to be associated with a leader `j where the

index j is the least among those that satisfy dist(v, `j) ≤ γ. Such a preference rule will prevent

the paths from nodes of different clusters to intersect. The process of clustering continues until

all subpaths of σ are processed resulting in a set of clusters C.

During the clustering process, the coloring of the clusters are also taken care of. For each

stage of the partition, we are given a palette of colors χ = {χ1, χ2, . . . , χx}. For the ith-cluster

formed in a given stage, the color χ[i mod x] is assigned to it. During the formation of clusters,

we observe that a currently formed cluster could possibly interfere with a previously formed

cluster. We say that a new cluster Ca interferes with an old cluster Cb if at least one shortest

path from a node u ∈ Cb to its leader `b ∈ Cb goes through Ca, and the rest of the shortest

paths (if any) would go through some of the newly formed clusters. We say that the shortest

path is ‘broken’ by Ca. Note that if there is at least one shortest path in Cb whose nodes are

not a member of Ca, then, we consider that the shortest path is not broken and that Cb is not

interfered by Ca.

Based on the possibility of a previously formed cluster being interfered by a currently formed

cluster, we now describe algorithm Augment-Clusters (5). This algorithm takes a list of currently

formed clusters Ccurr and a list of previously formed clusters Cold and outputs a list of newly

formed clusters Cnew by ‘augmenting’ any currently formed cluster C ∈ Ccurr that interferes

with a previously formed cluster C ∈ Cold. Define a shortest path p that starts from u ∈ C

66

and ends at its leader ` ∈ C. For every currently formed cluster C ∈ Ccurr, we compute the

set of all nodes A ∈ Cold whose shortest path to their leader is broken by C. For each node

u ∈ A, if all shortest paths from u to its leader ` goes through some clusters in Ccurr and at

least one shortest path goes through C, we augment C by including u to it to produce Cnew.

This augmentation continues for all such u ∈ A to result in Cnew. Note that if the computation

of A results in an empty set, then, Ccurr becomes Cnew.

We now describe the Path-Segment-Algorithm as follows. Given a component H, a path

separator q, locality parameter γ and τ > 0, the algorithm outputs a set of clusters C with

their leaders L by identifying a set of clusterable segments Q ∈ σ and calling Partition-Algorithm

on Q.

We assume that the algorithm knows all the path-separators and their clusters it has seen

so far. Let there be a path-separator q traversing from a to b across the given component H at

some stage in the algorithm. For all x ∈ H, define a distance parameter d to be the shortest

distance to a path-separator (except q) seen up to this point in the algorithm. We categorize

the nodes in H into three types. Nodes of Type 1 satisfy the condition d > γ+ 2τ . Such nodes

are unclustered nodes. Nodes of Type 2 satisfy γ + τ + 1 ≤ d ≤ γ + 2τ . And, finally, nodes of

Type 3 satisfy 0 ≤ d ≤ γ + τ .

We traverse along q from a to b and identify segments that can be clustered, called ‘cluster-

able segments’. The clusterable segments are essentially those segments that are a distance of

τ+γ+1 away from the nearest path separator. A detailed method of identifying such segments

is given in Algorithm 7.

We now provide an overview of the decomposition of the given graph G. We describe two al-

gorithms - Decompose-Component 8 and Recursive-Decomposition 9. The Decompose-Component

algorithm partitions a given component H of graph G into a set of strongly-connected compo-

nents H ′. Given the parameters γ, τ , the set of old clusters Cold and a set of color palettes

X = {P1,P2, . . . ,Plogn}, this algorithm uses a k-path separator S = {P1 ∪ P2 ∪ . . . ∪ P`} for

67

partitioning. The partitioning is done in a sequential order which is determined by the sequence

of the path separators in S. At any given stage, a partition is made by removing the set of

nodes that form a path separator Pi giving rise to a new connected-component. Furthermore,

for each path q ∈ Pi, we identify the clusterable segments and cluster them with with diameter

γ and a predefined color palette X[j]. All the individual clusters formed will have unique colors

from this palette. The algorithm returns a set of connected components H ′, a set of clusters

with their leaders and a modified γ parameter for the next stage of decomposition.

The algorithm Recursive-Decomposition, which works in a top-down fashion, splits a given

component H into multiple sub-components. This is done by a call to Decompose-Component,

which removes the given path-separator S = {P1 ∪ P2 ∪ · · · ∪ Pl} of H and the corresponding

clusters around it. This removal results in a set of components of the next stage, denoted by

H ′ = {H1
1 , H

2
1 , . . . , H

x
1 }, for an arbitrary x > 0 and a set of clusters C′.

At the beginning, let G = G \ s, have the single component H ∈ H. G is decomposed

into several smaller components by Decompose-Component, the set of which is denoted by

G1 = {H1
1 , H

2
1 , . . . , H

x
1 }. We continue decomposing the components of H ′. Suppose, dur-

ing the recursive decomposition process, we have decomposed G upto stage j. The com-

ponents of (j + 1)th stage are created by the following mechanism. We decompose each

component Hj ∈ Gj by calling Decompose-Component on each of them. This call generates

Gj+1 = {H1
j+1, H

2
j+1, . . . , H

x
j+1}. Note that it is assumed that a path-separator S is given for

every component of every stage. This recursive decomposition process continues by acting on

Gj+1
1. This process is carried out recursively on the subsequent set of components H ′ until no

new components are created, i.e., when the H ′ is a set of individual nodes. A formal description

of this recursive process is given in Algorithm 9 (Recursive-Decomposition).

The result of this process provides a set of clusters and their leaders of all stages 0 ≤ j ≤

log n− 1. Algorithm 8 and 9 describes the decomposition in detail.

1In the Recursive-Decomposition algorithm, we do not show the subscript indicating the stages to avoid
notational clutter.

68

Algorithm 5: Augment-Clusters(Ccurr,Cold)

Input: The current cluster set Ccurr and the old cluster set Cold

Output: Augmented cluster set Cnew

1 Cnew ← ∅;
2 foreach C ∈ Ccurr do

// All nodes ∈ Cold whose shortest path to their leader is broken by C

3 A = {u | u /∈ C ∧ u ∈ C ∈ Cold ∧ ∃v ∈ C ∧ v ∈ p(u, ` ∈ C)}
4 if A 6= ∅ then
5 foreach u ∈ A do
6 if All shortest paths from u to its leader ` ∈ C goes through

7 some clusters in Ccurr and at least one shortest path goes through C then
8 C ← C ∪ u ; // Augmentation step

9 end

10 end

11 end

12 Cnew ← Cnew ∪ C;

13 end
14 return Cnew;

Lemma 4.4.1. There are log n stages in the one-level recursive decomposition of G.

Proof. A path-separator p ∈ Pi will divide any component G into two connected components H1

and H2 whose sizes are at most n/2 each. Since the decomposition of G recursively progresses

until it comes to a stage where the component size shrinks to 1, it is clear that the number of

stages it takes for G to shrink from size n to 1 is log n.

Lemma 4.4.2. The maximum diameter of a cluster is O(γ log n).

Proof. Let ∆(C) denote the diameter of a new cluster and ∆old be the diameter of an immedi-

ately old cluster. The expression for diameter of a cluster is given by ∆(C) = γ + ∆old. A new

cluster C will have a diameter of γ initially. If C interferes with any old cluster, due to augmen-

tation process, the diameter of C will increase by up to ∆old(= γ+2τ). Likewise, ∆old could have

been an augmented cluster, whose diameter would have been increased by γ + 4τ . Since there

are log n stages at a particular level, the maximum diameter that a cluster could have would be∑logn−1
j=0 γ+ (2τ)j = γ+ (γ+ 2τ) + (γ+ 4τ) + (γ+ 6τ) + . . .+ (γ+ 2(log n− 1)τ) ≤ γ log n.

69

Algorithm 6: Partition-Algorithm(G,Q, γ,Cold,P)

Input: G, set of segments Q, parameter γ > 0, set of old clusters Cold and a color
palette P = {color0, color1, . . . , colorm−1}.

Output: A set of strongly connected clusters Cnew and respective leaders Lnew.

1 Ccurr ← ∅ ; // Set of strong partitions

2 L← ∅ ; // Set of leaders of the partitions/clusters

3 j = 1 ; // Beginning index of subpaths

4 foreach σ ∈ Q do
5 Partition σ into subpaths σj, σj+1, . . . , σj+k where len(σn) = γ, 1 ≤ n ≤ (j + k − 1)

and len(σj+k) ≤ γ;
6 Z ← zone(γ, σ);
7 for i = j to j + k do
8 Let color[i] denote ith color in the palette P ;
9 `i ← first node in σi ; // Choose a leader for each segment

10 L← L ∪ `i ; // Preferentially ordered list of leaders

11 Nuc = {v | v ∈ Z \ Ccurr} ; // Set of remaining unclustered nodes in Z
12 while Nuc 6= ∅ do
13 C = {v | v ∈ Nuc ∧ (`k ∈

L is the leader with smallest index k such that it has the shortest distance to v};

14 Ccurr ← Ccurr ∪ C ; // `k is the leader of C
15 color(C)← color[i mod |P|];
16 Nuc ← Nuc \ C;

17 end

18 end
19 j ← j + k + 1;

20 end
21 Cnew ← Augment-Clusters(Ccurr,Cold);
22 return Cnew,L ; // C = {C1, C2, . . . , Cx}, L = {`1, `2, . . . , `x}

70

Algorithm 7: Path-Segment-Algorithm(G,H, q, γ, τ,Cold)

Input: H, shortest path q ∈ G, parameter γ > 0 and τ > 0.
Output: A set of clusters with their leaders for a given path-separator.

1 L← ∅ ; // Set of leaders

2 C← ∅ ; // Set of clusters

3 Q← ∅ ; // set of clusterable segments of q
// For all x ∈ H, let d be the shortest distance to a path-separator

(except q) seen up to this point in the algorithm.

// Type 1: If d > γ + 2τ, x is an unclustered node.

// Type 2: If γ + τ + 1 ≤ d ≤ γ + 2τ, x is a clustered node of Type 2.

// Type 3: If 0 ≤ d ≤ γ + τ, x is a clustered node of Type 3.

// Let q span from point a to point b. We traverse one node at a time

along q from a till end point b is reached.

4 Let x be a point on q during the traversal;
5 while b is not reached do
6 if a is of Type 1 then
7 while x is Type 1 or 2 do
8 Continue traversing q;
9 end

10 if x is of Type 3 then
11 Let x′ be the node immediately preceding x;
12 Let σ be the segment from a to x′;
13 Q← Q ∪ σ;
14 a← x;

15 end

16 end
17 if a is of Type 2 then
18 if x is of Type 1 then
19 a← x;
20 end
21 while x is Type 2 do
22 Continue traversing q;
23 end

24 end
25 if a is of Type 3 then
26 while x is of Type 3 or 2 do
27 Continue traversing q;
28 end
29 if x is of Type 1 then

// Ignore the segment from a to x
30 a← x;

31 end

32 end

33 end
34 C,L← Partition-Algorithm(G,Q, γ,Cold);
35 return L, C;

71

Algorithm 8: Decompose-Component(G,H, γ, τ,Cold, X)

Input: G, component H that is k-path separable and parameter γ, set of old clusters
Cold and set of color palettes X = {P1,P2, . . . ,Plogn}.

Output: A set of strongly connected sub-components H ′, clusters C and modified γ.

// This algorithm works on only one component

// base case

1 if H consists of a single vertex v then
2 H ′ ← {v}; return H ′;
3 end
// main case

4 Let S = P1 ∪ P2 ∪ · · · ∪ P` be a k-path separator of H;
5 j = 0;
6 foreach Pi ∈ S do
7 H ← H −

⋃
1≤i≤i−1 Pi;

8 foreach q ∈ Pi do
9 L,C← Path-Segment-Algorithm(G,H, q, γ, τ,Cold, X[j]);

10 γ ← γ − 2τ ;
11 j ← j + 1 // Move on to next color palette

12 end

13 end
14 H ′ ← H − S ; // H ′ is a set of strongly-connected residual components

15 return H ′,C, γ

Algorithm 9: Recursive-Decomposition(G,H, γ, τ,C = ∅, X)

Input: G, a set of strongly-connected components H that excludes sink s, a set of
palettes X.

Output: A set of clusters C of varying sizes of different stages of a level.

// This algorithm works on only one level, with successively decreasing

cluster size for successive stages.

1 foreach component H ∈ H do
2 H ′,C′, γ ← Decompose-Component(G,H, γ, τ,C, X);
3 C← C ∪ C′ ;
4 if elements of H ′ are not individual nodes then

// Next stage

5 C← Recursive-Decomposition(G,H ′, γ, τ,C, X);

6 end

7 end
8 return C;

72

Lemma 4.4.3. The maximum number of colors in a color palette P is 2 log n+ 1.

Proof. Assume that a path q is partitioned and clustered by the Partition-Algorithm with a

locality parameter γ. The initial diameter of a partitioned cluster will be 2γ. From Lemma

4.4.2, the maximum diameter that this cluster can have after augmentation would be O(γ log n).

If two clusters Ca and Cb on q has to have the same color, then, they have to be at least

γ-distance apart. Considering both of them to have the worst-case diameter of O(γ log n),

the distance between them must be at least 2γ log n + γ to share the same color. Since this

distance is on the γ-partitioned path q, the number of unique colors in a palette would be

2γ logn+γ
γ

= 2 log n+ 1.

Lemma 4.4.4. The total number of color palettes needed to color the entire graph G is O(log n).

Proof. Let us consider a component H at a particular level and stage of decomposition. For

a given stage, the decomposition will require a constant number of colors and since there are

O(log n) stages of decomposition in a level (from Lemma 4.4.1), we would require a palette of

O(log n) colors. Since the decomposition of G requires log n levels, it follows that we would

require O(log n) palettes.

Lemma 4.4.5. The total number of colors is χ = O(log2 n).

Proof. From Lemma 4.4.4, a total of log n color palettes are needed to color the partitions of

a given graph G. Since each palette has O(log n) colors (from Lemma 4.4.3), it follows that a

total of O(log2 n) colors are required to color the partitions of G.

Lemma 4.4.6. The minimum distance between two clusters at any given level is 2τ , where

τ = Ω(γ/ log n).

Proof. At any level i, the algorithm Decompose-Component decomposes a given component

H into several sub-components. During decomposition, clusters are formed around each path

73

q ∈ Pi such that their diameters are γ − 2τ and also that the clusters do not have any nodes

that is within a distance of τ from Pi. Each cluster that is formed is at least τ -distance away

from a path separator Pi. Hence, it follows that two clusters at the same level i will be at least

2τ distance away from each other.

Lemma 4.4.7. Given G and the distance parameter γ, the Recursive-Decomposition algorithm

results in a (O(log n), O(log2 n),Ω(1/ log n))-partition of G.

Proof. From Lemma 4.4.2, Lemma 4.4.5 and Lemma 4.4.6, the value of maximum diame-

ter of a partitioned cluster is (O(log n), the number of colors assigned for each partition of

G is O(log2 n) and the minimum distance between two clusters is a factor of Ω(1/ log n)).

Hence, the partitioning of G using Recursive-Decomposition algorithm for all levels results in a

(O(log n), O(log2 n),Ω(1/ log n))-partition.

4.5 Construction of Laminar Clusters

To build a spanning tree, we need a hierarchical distribution of the clusters formed by the

Recursive-Decomposition algorithm. Given a set of non-laminar clusters at level (i − k), we

construct a set of laminar clusters CL
i . The construction of laminar clusters is described as

follows.

Define iteration as one step in the process of forming a laminar cluster. The laminar clusters

are formed in a sequence of iterations, 1 ≤ j ≤ logD
k

. Each iteration involves clusters of k levels.

In other words, to form an ith-level laminar cluster Ca
i , the Decompose-Component algorithm is

used with a clustering parameter of (χ+ 1) · 2k. Since each step of the iteration jumps k levels,

the total number of iterations needed to form the laminar clustering for G with diameter logD,

is logD
k

. The locality parameter used for successive levels increases by a factor of 2. Hence, for

every k levels, γi
γi−k

= 2k.

Assume that the set of m non-laminar level-(i−k) clusters are {C1
i−k, C

2
i−k, . . . , C

m
i−k} which

74

are formed by the Decompose-Component algorithm. Each cluster Cj
i−k, 1 ≤ j ≤ m is contracted

and represented by a single leader node. This contraction process results in a new set of

leaders Li−k = {`1
i−k, `

2
i−k, . . . , `

m
i−k}, where `ji−k ∈ Li−k is the leader of Cj

i−k. Recall that

(`ii−k, `
j
i−k) ∈ Li−k are adjacent leaders if their respective clusters (Ci

i−k, C
j
i−k) are connected by

at least one common edge. In Li−k, those leaders that are adjacent are connected to each other

by a shortest path in G and where the path is contained in the respective clusters. The set of

connections between adjacent leaders in Li−k produces a connected graph. Denote this resulting

graph as H. Note that the contraction process will not change its “minor-free” property and

the resulting contracted graph H will still be a minor-free graph.

Lemma 4.5.1. If a shortest path in H has at least χ+ 1 leaders, then, its length is Ω(γi−k
logn

).

Proof. A color palette that has χ colors can uniquely color χ leaders in the shortest path. From

pigeonhole principle, there will be at least two leaders in the path that will be assigned the

same color if the path has more than χ leaders. In that case, every (χ + 1)th leader will share

the same color. From Lemma 4.4.6, the minimum distance between any two clusters of same

color is Ω(γi−k
logn

), which suggests that there will be at least χ + 1 leaders between the clusters.

Hence, the length of the shortest path will be Ω(γi−k
logn

).

Given γi
γi−k

= 2k, the following corollary is provided.

Corollary 4.5.2. If a shortest path has at least (χ+ 1) · 2k leaders, then, its length is at least

γi
logn

.

We now construct another graph H ′ from H by assigning the weights of all the edges of H to

unit distance. Algorithm Decompose-Component with a clustering parameter of γ′ = (χ+1) ·2k

is applied on H ′ to create laminar clusters. We analyze H ′ and prove the following properties.

The same properties (with appropriately modified parameter values) are later proved in H.

Lemma 4.5.3. The diameter of a cluster Cj
i−k ∈ H ′ is O((χ+ 1) · 2k · σ).

75

Proof. When H ′ is decomposed with a clustering parameter of γ′ = (χ+ 1) · 2k, it would result

in clusters of diameter (from Lemma 4.4.2) at most O(γ′ · log n) = O((χ+ 1) · 2k · log n), where

σ = log n.

Lemma 4.5.4. The minimum distance between any two leaders of same color is 2τ ′ where

τ ′ = Ω(γ′

logn
).

Proof. When H ′ is decomposed with a clustering parameter of γ′ = (χ + 1) · 2k, from Lemma

4.4.6, the minimum distance between two leaders of the same color is Ω((χ+1)·2k
logn

).

Lemma 4.5.5. Given H ′ and the distance parameter γ′, the Decompose-Component algorithm

results in a (O(log n)),Ω(1/ log n))-partition of G.

Proof. From Lemma 4.5.3 and Lemma 4.5.4, the value of maximum diameter of a laminar

cluster in H ′ is (O(log n) and the minimum distance between two clusters that share the same

color is a factor of Ω(1/ log n)). Hence, the partitioning of H ′ using Decompose-Component

algorithm results in a (O(log n),Ω(1/ log n))-partition.

We now cluster H using Decompose-Component algorithm with a clustering parameter of

(χ+ 1) · 2k. Define σ̂i to be the accumulated stretch of an arbitrary cluster Ca
i ∈ H. At every

iteration, a new stretch of (χ+ 1) · 2k · σ is introduced by the clustering algorithm.

Lemma 4.5.6. The maximum diameter of a cluster Cj
i ∈ H is O((χ+ 1) · σ · σ̂i−k · γi).

Proof. Since the clustering parameter is γ = (χ+ 1) · 2k, the diameter of each resulting cluster,

from Lemma 4.4.2, would be γ ·σ. Since, each cluster Cj
i ∈ H has a prior diameter of σ̂i−k ·γi−k

and γi
γi−k

= 2k, the new, extended diameter of Cj
i would be (χ + 1) · 2k · σ · σ̂i−k · γi−k =

O((χ+ 1) · σ · σ̂i−k · γi).

Lemma 4.5.7. The minimum distance between any two clusters at level i that share the same

color in H is Ω((χ+1)·2k·γi−k
logn

).

76

Proof. From Lemma 4.4.6 and since γ′ = (χ + 1) · 2k it follows that the minimum distance is

Ω((χ+1)·2k·γi−k
logn

), where γi−k is the prior diameter of the clusters.

Lemma 4.5.8. The accumulated stretch of a laminar cluster up to iteration j is σ̂j, 1 ≤ j ≤
logD
k

.

Proof. For each iteration, the stretch of a cluster increases by a factor of (χ+ 1) · 2k ·σ. Let the

accumulated stretch for a cluster at the end of iteration (j−1) be σ̂j−1. Since the diameter of any

cluster before the iteration begins is 1, the stretch is 1. For the trivial case, after iteration j = 1,

the diameter of a cluster (From Lemma 4.5.6) would be [(χ+1) ·2k ·σ] · σ̂0 ·γ0 = [(χ+1) ·σ] ·γ1,

where σ̂0 = 1 and γ0 · 2k = γ1. Hence, the accumulated stretch of a cluster just after the first

iteration is σ̂1 = [(χ + 1) · σ]. After the second iteration, the diameter of a cluster would be

[(χ+ 1) · 2k · σ] · σ̂1 · γ1 = [(χ+ 1) · 2k · σ)] · [(χ+ 1) · σ)] · γ1 = [(χ+ 1) · σ]2 · γ2. Therefore, the

accumulated stretch of a cluster just after iteration j = 2 is σ̂2 = [(χ+ 1) · σ]2.

At the end of any iteration j, 0 ≤ j ≤ logD
k

, since the diameter is O((χ+ 1) · σ · σ̂j · γi), the

accumulated stretch can be deduced to be (χ+ 1) · σ · σ̂j−1 = σ̂j = [(χ+ 1) · σ]j.

4.6 Spanning Tree Construction

We describe the construction of a spanning tree T from a laminar set of clusters C. The

Spanning-Tree algorithm considers a set of laminar clusters at any level i to give a spanning

tree Ti. The construction is as follows. For the level i = 0, the trivial case, all the clusters are

individual nodes. Hence, the tree will be a node.

Assuming that we have built the spanning tree up to a level i−k and we would like to build

the tree for level i. For every Ci−k in the given Ci, we recursively build spanning trees Ti−k to

get a set Ti−k of such spanning trees. Recall that adjacent clusters as those where there is at

least one edge connecting a node from one cluster to a node in the other. Based on this, we

develop a graph H by connecting the leaders of Ci−k with edges if the corresponding clusters

77

are adjacent. The weights of these edges would be the shortest path distances between the

leaders. Once H is developed, we compute H ′, a tree of leaders of level i − k, by running a

Breadth-First-Search on H. This tree H ′ provides a ‘zoomed-out’ view of the real-spanning

tree T .

From H ′, we now identify those real edges E that connect different clusters. Once identified,

the union of Ti−k and E provides the spanning tree Ti. We now explain the method to identify

the set of edges E in H ′. Let us consider any pair of adjacent leaders `a and `b that belongs to

clusters Ca
i−k and Cb

i−k respectively. Let p be the shortest path in (Ca
i−k ∪ Cb

i−k) that connects

`a to `b. We include this path p in E. We repeat this process of identifying those edges for all

pairs of adjacent clusters in H ′ to get E. Once E is computed, the union of Ti−k with E will

provide a single large spanning tree Ti.

Algorithm 10: Spanning-Tree(CL
i , k)

Input: A laminar set of clusters CL
i , k > 0.

Output: A spanning tree Ti, where Ti is the set of edges in G.

1 Let Ci−k be the set of laminar clusters at level i− k.
2 if i > k then
3 Ti−k ← ∅ ; // Ti−k is the set of spanning trees

4 foreach Ci−k ∈ CL
i do

5 Ti−k ← Spanning-Tree(Ci−k);
6 Ti−k ← Ti−k ∪ Ti−k
7 end
8 H ← Graph obtained by connecting the leaders of Ci−k with edges if the

corresponding clusters are adjacent. Weights of the edges are the shortest path
distances between the leaders;

9 H ′ ← Compute Breadth-First-Search tree on H ; // H ′ is a tree of leaders

10 foreach pair of adjacent leaders (`a ∈ Ca
i−k, `b ∈ Cb

i−k) ∈ H ′, ∀a, b ∈ |Ci−k| do
11 Let p be a shortest path in (Ca

i−k ∪ Cb
i−k) that connects `a and `b;

12 E ← E ∪ p;
13 end
14 Ti ← Ti−k ∪ E;
15 return Ti;

16 else if i ≤ k then
// All clusters are individual nodes

17 return v ∈ CL
i ;

18

78

For any cluster X, let X(A) denote the set of demands with source in X whose paths leave

from the leader of X toward the leaders of a higher level cluster.

We give the following trivial upper and lower bound for the special case where 0 ≤ i ≤ 1,

which follows directly from the observation that each demand needs to form a path of length

at least 1 unit.

Lemma 4.6.1. The number of clusters along the shortest path p from any leader `i−k to `i is

Jk = 2k · σ̂i · χ = 2k+log(σ̂iχ).

Proof. The shortest path p from a leader `i−k to `i will be of length σ̂iγi. Consider a segment

of length γi−k in p. This segment will have χ clusters. Since there are σ̂i · γi/γi−k segments in

p, the total number of clusters along the path p will be σ̂i · γi
γi−k
· χ = 2kσ̂iχ. Hence, the total

number of clusters that needs to be passed through is given by 2kσ̂iχ = 2k+log(σ̂iχ).

Lemma 4.6.2. For any level 0 ≤ i ≤ log n − 1, Ci(A) ≤ n · f(2i), where n is the number of

nodes and f(2i) is the diameter of Ci+1.

Proof. The diameter of Ti, is given by ∆(Ti) = Jk∆(Ti−k) + σ̂iγi, where Jk is the number of

clusters at level (i− k). If we consider demands to traverse a maximum of k levels to reach its

leader, the expression for diameter can be rewritten as: ∆(Ti) = Jk∆(Ti−k).

From Lemma 4.6.1, we observe that

∆(Ti) = Jk∆(Ti−k)

= J
i/k
k ∆(T1)

= 2(k+log σ̂iχ)(i/k) · 1

79

4.6.1 Computation of Paths

To compute the set of paths, we consider the spanning tree T . All the leaf nodes of T have

a unique path to the root r by following a sequence of leaders all the way to r. Consider one

such path from a leaf node u to r, denoted by p(u, r). Consider any two successive leaders `1

and `2 in p(u, r) ∈ T . A shortest path p(`1, `2) between `1 and `2 is chosen from the spanning

tree T . Note that this new path segment p(`1, `2) could possibly be shorter and contained in

the shortest path of the spanning tree T . This is because, in T , there could be redundant paths

that originates from a node u to its leader `1 and the path from `1 to its leader `2 could go

through u, forming a loop. The concatenation of shortest paths p(`i, `i+1), from when `i is a

leaf node until `i+1 = r, gives p′(u, r). In a similar fashion, we choose the shortest paths from

all the leaf nodes of T to r, which gives the required set of paths P =
⋃
u∈L p

′(u, r), where L is

the set of leaf nodes of T .

For analysis sake, we do not consider the strict version of the paths P and instead we use

the paths in the spanning tree T that could possibly be longer with redundant paths. Hence,

the result of our analysis on the upper bound will be pessimistic, i.e., worse than what the

analysis on P would provide.

4.6.2 Competitive Ratio

Let A denote an arbitrary set of demands. Let C∗(A) denote the cost of optimal paths in A

to the root. Let C(A) denote the cost of the paths given by our algorithm. We will bound the

competitive ratio C(A)/C∗(A).

The cost C(A) can be bounded as a summation of costs from the different levels. For any

cluster X, let X(A) denote the set of demands with source in X whose paths leave from the

leader of X toward the leader of a higher level cluster.

Lemma 4.6.3. The cost of aggregation from level i = 0 to i = 1 is C1(A) ≤ Q(1) where

80

Q(1) = n · f(21).

Proof. In this base case, demands from all the n sources has to traverse at most a distance of

21 to reach their leaders. Hence, it follows that the cost would be at most n · f(21).

Lemma 4.6.4. The cost of aggregation from level i = 0 to i = 1 is C∗1(A) ≥ (n− 1).

Proof. The unit demands from each of the n nodes would have to traverse at least a distance

of 1 unit to reach a neighbor node. The nodes at level i = 0 form a spanning tree rooted at r

with n−1 edges. Hence, the total cost of sending the demands would be at least (n−1) ·1.

Lemma 4.6.5. The optimal cost of aggregation at any level 1 ≤ i ≤ log n−1 is C∗i (A) ≥ n
χ
·2i−k.

Proof. Consider a cluster Ca
i−k ∈ Ci−k with leader `ai−k. Consider a demand (s, r) ∈ Ca

i−k where

s ∈ Ci−k and root r is at a level i or higher. The least cost can be achieved when the demand

at s traverses to the next leader at a distance of at least 2i−k. If we consider such aggregation

for each of the n/χ clusters, the optimal cost would be at least n
χ
· 2i−k.

Lemma 4.6.6. The approximation ratio for the cost of aggregation between level i− k and i is

2logχ · 2k+i
log(σ̂jχ)

k , where i = jk.

Proof. Let iteration j result in an accumulated stretch of σ̂j at level i.

C(i)

C∗(i)
≤ n ·∆(Ti)

n
χ
· 2i−k

=
χ ·∆(Ti)

2i−k

= χ · 2(k+log σ̂jχ)(i/k)−i+k

= χ · 2i(
log σ̂jχ

k
)+k (From Lemma 4.6.2)

= 2logχ · 2i(
log σ̂jχ

k
)+k

= 2logχ+(log σ̂jχ)i/k+k

81

Substituting k =
√

logD above, the approximation ratio is 2logχ · 2
√

logD+i
log(σ̂jχ)√

logD .

Lemma 4.6.7. At iteration j, Cj(A) ≤ f(|X(A)|) · σ̂j · 2jk, where |X(A)| is the number of

sources and jk is the number of levels demand traverses to reach the next leader.

Proof. Consider a cluster X at level i = jk. If X(A) is the demand generated from the sources

in X, the demands have to traverse to the next higher level cluster leader. The demands have

to traverse at least a distance of σ̂j · 2jk in the spanning tree T to reach the next level leader,

where 2jk is the diameter at level i and σ̂j is the accumulated stretch resulting from the laminar

construction.

Since C(A) =
∑

e∈E Cj(A), the total cost incurred for all the logD/k iterations will be

C(A) ≤
∑ logD

k
j=1 Cj(A).

Lemma 4.6.8. For any cluster X at level i, 2 ≤ i ≤ logD − 1, C∗(A) ≥ R(i)/χ, where

R(i) =
∑

X∈Zi f(|X(A)|) · (γi−k/2 log n), where Zi is the set of clusters at level i.

Proof. Let Zi(c) be the set of clusters at level i which receive color c ∈ [1, χ]. Consider a cluster

X ∈ Zi(c). Consider a demand (s, t) ∈ χ(A). From the cluster construction algorithm, the

minimum distance between two clusters is 2τ = 2Ω(γi−k/ log n). Consider the subpaths from

X(A) of length up to γi−k/ log n. In the best case, these subpaths from X(A) may be combined

to produce a path with the smallest possible total cost Ω(f(|X(A)|) · γi−k/ log n). For any two

nodes u ∈ X(A) and v ∈ Y (A), where X, Y ∈ Zi(c) and X 6= Y , dist(u, v) > 2γi−k/ log n.

The subpaths of lengths up to 2γi−k/ log n cannot combine. Consequently, C∗(A) ≥ R(i, c)

where R(i, c) =
∑

X∈Zi(c) f(|X(A)|) · 2γi−k/ log n. Let Rmax = maxc∈[1,χR(i, c). We have that

C∗(A) ≥ Rmax. Since R(j) =
∑χ

c=1R(i, c) ≤ Rmax · χ. We obtain C∗(A) ≥ R(i)/χ, as

needed.

We also get the following trivial lower bound for the special case where 0 ≤ i ≤ 1, which

follows directly from the observation that each demand needs to form a path with length at

82

least 1.

Lemma 4.6.9. For any Zi, 0 ≤ i ≤ 1, C∗(A) ≥
∑

X∈Zi f(|X(A)|).

Lemma 4.6.10. C(A)
C∗(A)

≤ O(2
√

logD · log2
√

logD+3 n).

Proof.

C(A)

C∗(A)
≤

logD
k∑
j=1

f(|X(A)|) · σ̂j · 2jk

f(|X(A)|)·
2γjk−k
logn

χ

(By Lemmas 4.6.7, 4.6.8 and 4.5.8)

≤

logD
k∑
j=1

σ̂j · 2jk · χ
2γjk−k
logn

≤

logD
k∑
j=1

[(χ+ 1) · σ]j · 2k−1 · χ · log n (∵ σ̂j = [(χ+ 1) · σ]j)

≤

logD
k∑
j=1

χj+1 · logj+2 n · 2k

≤

logD
k∑
j=1

2k · log3j+4 n (∵ χ = O(log2 n))

When k =
√

logD, the competitive ratio is C(A)
C∗(A)

≤ O(2
√

logD · log3
√

logD+4 n).

The following corollaries follows from 4.6.10.

Corollary 4.6.11. If D << n, the approximation ratio of our algorithm is O(log3
√

logD+4 n).

Corollary 4.6.12. If D >> n, the approximation ratio of our algorithm is O(2
√

logD).

4.7 Conclusions

We provide a set of paths for the single-sink buy-at-bulk network design problem in minor-free

graphs. The spanning tree and the resulting set of paths was computed with the assumption

83

that the source-destination pairs and fusion-cost functions at every edge were unknown. We

presented nontrivial upper bound for the cost of the set of paths. We have demonstrated that

a simple, deterministic, polynomial-time algorithm based on sparse covers can provide a set

of paths between all nodes in G to root r. We have shown that this algorithm guarantees

O(2
√

logD · log3
√

logD+4 n)-approximation.

84

Chapter 5

Conclusions and Outlook

In this dissertation, we proposed algorithms for constructing efficient transportation structures

for a variety of problems including data communication, VLSI circuitry, transportation and

logistics, publish/subscribe systems, distributed paging and for oil/gas pipelines. In such dis-

tributed networks, constructing efficient, near-optimal communication structure that is oblivi-

ous to the number and location of the sources and to the fusion cost function is very important.

Our proposed algorithms are centralized algorithms that are simple, deterministic and provide

a polynomial-time approximation guarantees for a variety of scenarios such as Single-Sink Buy-

at-Bulk (SSBB) on Doubling-Dimension Graphs where we provide a (log3D)-approximation,

Multi-Sink Buy-at-Bulk (MSBB) for Planar Graphs where we guarantee O(min(log n, logD))-

approximation and MSBB for Minor-Free graphs where we provide a O(2
√

logD · log3
√

logD+4 n)-

approximation over the optimal cost.

Network design problems have been studied in the past using a variety of approaches. Some

of them include greedy algorithms, primal-dual approaches, iterative routing (a polyhedral

approach), randomization, metric embedding techniques, matching-based augmentation and

more.

In the recent years, metric embedding techniques have been used widely for network design

problems. Y. Bartal’s work and subsequent improvements on embedding a general metric space

into distributions over tree metrics have seen widespread use. The central idea is that given any

metric space, a tree metric can be randomly generated such that distances in the original metric

space are closely approximated by the expected distances in the computed random tree. Many

optimization problems on general metrics can be reduced to tree metrics using this technique

and are often much simpler to solve. Network Design algorithms have also been widely studied

85

in Operations Research under the name of “Discrete Network Optimization”. Many network

flow problems have been optimized using improvements over linear programming and related

models for minimization. This research work takes a step further by developing deterministic

algorithms as against randomized schemes and still provide close approximations.

5.1 Outlook

There are various real-world applications of network design. An emerging class of applications

that has gained focus in Cloud Computing. More specifically, the datacenter networks that are

at the core of cloud computing. Massive datacenters have been installed around the globe by

Google, Microsoft and Amazon (EC2) and have already rolled out a variety of offerings using

their datacenters and related middleware.

The datacenter networks that interconnect various geographically distributed datacenters

are designed with multiple overlays in such a fashion that they are highly-available and fault-

tolerant. Furthermore, distributed systems such as these are also designed for extreme low-

latency. Such requirements need efficient design of networks and related overlays. With the

computing and storage increasingly moving from PC-like clients to large Internet services, most

applications and services are being offered by Web applications. This shift toward server-side

computing has provided plenty of advantages to vendors. To provide efficient and cost-effective

services (IaaS - Infrastructure as a Service, Saas - Software as a Service etc), the vendors aim

at optimizing all aspects of their offerings - network design, fault-tolerance, high-availability,

low-latency, consistency, network partition tolerance etc. Among these, network design is an

important component that companies such as Google and Amazon focus heavily and rely on

robust hardware that are well-tested with various configurations.

Datacenters are geographically distributed (possibly among several continents). There have

been many studies on how to cluster the servers, route data efficiently among the datacenters

and within the datacenters. Such problems are central to the operational efficiency of the sys-

86

tems. Oblivious network design is central to addressing such problems in a variety of ways. For

example, sparse-cover and related partitioning techniques can be applied to efficient clustering

of servers within a datacenter (for private clouds) and among datacenters. Since all these can

be readily mapped to planar graphs, our solution to find a set of paths for any given set of

demand pairs can be used.

Distributed version of our algorithms can be more useful in the datacenter scenario. It would

be nice to have localized algorithms running on separate datacenters to organize themselves

automatically and configure themselves for optimal performance for any kind of traffic demands.

This could be a very promising area of future study. Likewise, in datacenters, one has to address

the storage hierarchy that needs to quantify say latency, bandwidth and capacity characteristics

of a large-scale distributed storage system.

Another emerging area that has its core in efficient network design is in big-data analytics.

Today, we see an explosive growth in data and one needs to mine it properly and analyze it to

make sense of it and predict different parameters. Such tasks calls for large-scale distributed

systems that can accept chunks of data and process them in parallel to provide very fast,

near-real-time analytics. To distribute the streaming incoming data (as chunks) to several

thousand nodes is a non-trivial task. The process of splitting a data set into smaller fragments

(shards) and distributing them across a large number machines is hard from both theoretical

and engineering perspective. The problems such as how large or small should the shards be,

which machines to load, where the machines are, how quickly can they loaded etc are crucial

to the generation of revenue by the vendors. The sharding policy can vary depending on space

constraints and performance considerations. Moreover, one must know in advance which nodes

to load, which nodes are lightly loaded and how to ensure fault-tolerance. Principles from

oblivious network design, facility-location and k-Median problems come in handy in solving

such issues.

To summarize, highly scalable architectures are maturing and have reached a stage where

87

more challenges abound - real-time coordination among various geographically distributed dat-

acenters, power, performance (throughput, latency, resiliency), privacy etc. This involves rigor-

ous theoretical studies that further extend and improve the current optimizations provided by

randomized algorithms and heuristics. The merger of strong theoretical analysis with smart en-

gineering skills have always helped companies outlast their competition. A promising research

agenda for the future calls for studies that not only involve pure theory that are highlighted

here and in related literature, but also, system design and practical engineering skills that are

related to real-world applications with real, pressing needs.

88

Bibliography

[AA97] B. Awerbuch and Y. Azar. Buy-at-bulk network design. In FOCS ’97, page 542,
Washington, DC, USA, 1997. IEEE Computer Society.

[AGGM06] Ittai Abraham, Cyril Gavoille, Andrew V. Goldberg, and Dahlia Malkhi. Routing
in networks with low doubling dimension. In ICDCS ’06, page 75, Washington,
DC, USA, 2006.

[Bar94] Y. Bartal. Competitive analysis of distributed online problems - distributed paging.
In Ph.D. Dissertation, 1994.

[Bar98] Yair Bartal. On approximating arbitrary metrices by tree metrics. In STOC ’98,
pages 161–168, New York, NY, USA, 1998. ACM.

[BLT07] Costas Busch, Ryan LaFortune, and Srikanta Tirthapura. Improved sparse covers
for graphs excluding a fixed minor. In PODC ’07: Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed computing, pages 61–70, New
York, NY, USA, 2007. ACM.

[Bor26] O. Boruvka. O jistm problému minimélńım. In
Práca Moravské P řírodověcké Společnosti 3 , (in Czech), pages 37–58,
1926.

[CHKS06] C. Chekuri, M. T. Hajiaghayi, G. Kortsarz, and M. R. Salavatipour. Approximation
algorithms for non-uniform buy-at-bulk network design. In FOCS ’06, pages 677–
686, Washington, DC, USA, 2006.

[FGNW06] Stefan Funke, Leonidas Guibas, An Nguyen, and Yusu Wang. Distance-sensitive
information brokerage in sensor networks. In DCOSS 2006, volume 4026 of LNCS,
pages 234–251, San Francisco, USA, 2006. IEEE, Springer.

[FLL06] Pierre Fraigniaud, Emmanuelle Lebhar, and Zvi Lotker. A doubling dimension
threshold θ(log log n) for augmented graph navigability. In ESA, LNCS 4168, pages
376–386. Springer, 2006.

[Fra07] Pierre Fraigniaud. The inframetric model for the internet. Technical report, 2007.

[GE03] Ashish Goel and Deborah Estrin. Simultaneous optimization for concave costs:
single sink aggregation or single source buy-at-bulk. In SODA ’03, pages 499–505,
Philadelphia, PA, USA, 2003. SIAM.

[GGMZ09] Jie Gao, Leonidas J. Guibas, Nikola Milosavljevic, and Dengpan Zhou. Distributed
resource management and matching in sensor networks. In Proc. of (IPSN’09),
pages 97–108, April 2009.

[GHR06] Anupam Gupta, Mohammad T. Hajiaghayi, and Harald Räcke. Oblivious network
design. In SODA ’06: Proceedings of the seventeenth annual ACM-SIAM sympo-
sium on Discrete algorithm, pages 970–979, New York, NY, USA, 2006. ACM.

89

[GJ77] M. R. Garey and D. S. Johnson. The rectilinear steiner tree problem is np-complete.
SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.

[GK10] Anupam Gupta and Jochen Könemann. Approximation algorithms for network
design: A survey. Surveys in Operations Research and Management Science, In
Press, Corrected Proof:–, 2010.

[GKL03] Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries,
fractals, and low-distortion embeddings. In FOCS ’03, page 534, Washington, DC,
USA, 2003. IEEE Computer Society.

[GMM01] Sudipto Guha, Adam Meyerson, and Kamesh Munagala. A constant factor approx-
imation for the single sink edge installation problems. In STOC ’01, pages 383–388,
New York, NY, USA, 2001. ACM.

[GP09] Ashish Goel and Ian Post. An oblivious o(1)-approximation for single source buy-at-
bulk. Foundations of Computer Science, Annual IEEE Symposium on, 0:442–450,
2009.

[GP10] Ashish Goel and Ian Post. One tree suffices: A simultaneous o(1)-approximation
for single-sink buy-at-bulk. Foundations of Computer Science, Annual IEEE Sym-
posium on, 2010.

[GR10] Fabrizio Grandoni and Thomas Rothvoss. Network Design via Core Detouring for
Problems Without a Core. In ICALP, pages 490–502, 2010.

[HSS08] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network struc-
ture, dynamics, and function using NetworkX. In Proceedings of the 7th Python in
Science Conference (SciPy2008), pages 11–15, Pasadena, CA USA, August 2008.

[IW91] Makoto Imase and Bernard M. Waxman. Dynamic steiner tree problem. SIAM
Journal on Discrete Mathematics, 4(3):369–384, 1991.

[JLN+05] Lujun Jia, Guolong Lin, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sun-
daram. Universal approximations for tsp, steiner tree, and set cover. In STOC ’05:
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing,
pages 386–395, New York, NY, USA, 2005. ACM.

[JNRS06] Lujun Jia, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram. Gist:
Group-independent spanning tree for data aggregation in dense sensor networks.
In DCOSS, pages 282–304, 2006.

[KMW05] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. On the locality of
bounded growth. In PODC ’05, pages 60–68, New York, NY, USA, 2005. ACM.

[KRX08] Goran Konjevod, Andréa W. Richa, and Donglin Xia. Dynamic routing and loca-
tion services in metrics of low doubling dimension. In DISC ’08, pages 379–393.
Springer-Verlag, 2008.

90

[KSW09] Jon Kleinberg, Aleksandrs Slivkins, and Tom Wexler. Triangulation and embedding
using small sets of beacons. J. ACM, 56(6):1–37, 2009.

[Kur30] C. Kuratowski. Sur le probleme des courbes gauches en topologie. In Fundamenta
Mathematicae, pages 15: 271–283, 1930.

[MP94] Y. Mansour and D. Peleg. An approximation algorithm for minimum-cost network
design. Technical report, Jerusalem, Israel, Israel, 1994.

[Nie06] T. Nieberg. Independent and Dominating Sets in Wireless Communication Graphs.
PhD thesis, University of Twente, Zwolle, April 2006.

[Pel00] David Peleg. Distributed computing: a locality-sensitive approach. SIAM, Philadel-
phia, PA, USA, 2000.

[PP06] Sriram V. Pemmaraju and Imran A. Pirwani. Energy conservation via domatic
partitions. In MobiHoc 2006, pages 143–154, New York, NY, USA, 2006. ACM.

[SCRS00] F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian. Approximating the
single-sink link-installation problem in network design. SIAM J. on Optimization,
11(3):595–610, 2000.

[Tal02] Kunal Talwar. The single-sink buy-at-bulk lp has constant integrality gap. In
Proceedings of the 9th International IPCO Conference on Integer Programming and
Combinatorial Optimization, pages 475–486, London, UK, 2002. Springer-Verlag.

[Tho81] C. Thomassen. Kuratowski’s theorem. In Journal of Graph Theory, pages 5:225–
241, 1981.

[Vo6] Stefan Voß. Steiner tree problems in telecommunications. In Mauricio G. C. Re-
sende and Panos M. Pardalos, editors, Handbook of Optimization in Telecommuni-
cations, pages 459–492. Springer US, 2006.

[Wag37] K. Wagner. Über eine eigenschaft der ebenen komplexe. In Mathematische Annalen,
pages 114(1): 570–590, 1937.

91

Vita

Srivathsan Srinivasagopalan was born in Madras (now, Chennai), India, in 1974. He obtained

his bachelor’s degree in computer science and engineering in 1997 from SRM Engineering Col-

lege, Madras. He received his master’s degree in computer science from University of Texas,

Dallas in 1999. He has more than seven years of work experience in various telecommunication

startup companies taking on roles as software design engineer, test engineer and team-lead (all

for wireless, optical, ethernet - networking startup companies). During his doctoral studies

at Louisiana State University, he has co-authored ten refereed conference papers, two journal

publications (one more in review) and several invited talks.

His research interests are in network algorithms, communication graphs and approxima-

tion schemes. He gravitates naturally to well-motivated problems where theoretical challenges

abound and those that have immediate practical applications.

92

	Louisiana State University
	LSU Digital Commons
	2011

	Oblivious buy-at-bulk network design algorithms
	Srivathsan Srinivasagopalan
	Recommended Citation

	Acknowledgments
	Abstract
	Introduction
	Network Design
	Steiner Tree Problems

	Oblivious Buy-at-Bulk Network Design
	General Problem Statement

	Definitions
	Related Work
	Oblivious Network Design
	Non-Oblivious Network Design

	Significance of the Research

	Doubling-Dimension Graphs
	Overview
	Problem Statement
	Contribution

	Definitions
	Technique Used
	Overlay Tree
	Basic Properties of Overlay Tree
	Competitive Analysis of Overlay Tree

	Spanning Tree Construction
	Modified Tree Construction
	Analysis of Modified Tree
	Lower Bound
	Simulation Results
	Conclusions

	Planar Graphs
	Overview
	Problem Statement
	Contribution

	Definitions
	Technique Used
	Sparse Cover
	Algorithm
	Analysis for O(logD)-approximation
	Analysis for O(logn)-approximation
	Conclusions

	Minor-Free Graphs
	Overview
	Problem Statement
	Contribution

	Definitions
	H-Minor Free Graphs
	Partition
	Coloring
	Laminar Family
	Hierarchical Partitioning

	Technique Used
	Strong Partitioning in Minor-Free Graphs
	Construction of Laminar Clusters
	Spanning Tree Construction
	Computation of Paths
	Competitive Ratio

	Conclusions

	Conclusions and Outlook
	Outlook

	Bibliography
	Vita

